Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F_1=F.\cos30=\frac{60.\sqrt{3}}{2}=30\sqrt{3}\left(N\right)\)
\(F_2=F.\cos60=\frac{60.1}{2}=30\left(N\right)\)
Muốn thử lại xem đúng hay ko áp dụng định lý hàm sin
\(F^2=F_1^2+F_2^2+2F_1F_2.\cos\left(\widehat{F_1;F_2}\right)\)
Chắc chắn đúng =))
Tặng kèm cái hình
F=\(\sqrt{F^2_1+F_2^2+2F_1.F_2.\cos\alpha}\)\(\Rightarrow\)F2=0N
Nếu F1=F2
do góc giữa vecto F1, F2=60o
áp dụng định lý hàm cos
F2=F12+ F22+2F1F2cos (vecto)
=> F1=0,58F
Phân tích lực F→F→ thành hai lực F1−→F1→ và F2−→F2→ theo hai phương OA và OB (hình 9.10). Giá trị nào sau đây là độ lớn của hai lực thành phần? A. F1 = F2 = F; B. F1 = F2 = 1212F; C. F1 = F2 = 1,15F; D. F1 = F2 = 0,58F. |
mình muốn hỏi là ở câu b có F=3,5N mà Fmin=4. Vậy tại sao F>Fmin ???
\(cos\alpha=\dfrac{F_1^2+F_2^2-F^2}{2.F_1.F_2}\)\(\Rightarrow\)\(\alpha\)\(\approx\)1190
F = F 1 2 + F 2 2 + 2 F 1 F 2 cos α
Đáp án: D