Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: 3 - 2x > 0 <=> x < 3/2
3x2 - 6x + 4 = 3(x - 1)2 + 1 > 0 => \(x\sqrt{3-2x}\) > 0 => x > 0
Binh phương 2 vế của PT ta được:
x2.(3 - 2x) = (3x2 - 6x + 4)2
<=> 3x2 - 2x3 = 9x4 + 36x2 + 16 - 36x3 + 24x2 - 48x
<=> 9x4 - 34x3 + 57x2 - 48x + 16 = 0
<=> (9x4 - 9x3) - (25x3 - 25x2) + (32x2 - 32x) - (16x - 16) = 0
<=> 9x3.(x - 1) - 25x2.(x - 1) + 32x.(x - 1) - 16(x - 1) = 0
<=> (x - 1).[9x3 - 25x2 + 32x - 16] = 0
<=> (x - 1).[(9x3 - 9x2) - (16x2 - 16x) + (16x - 16) ] = 0
<=> (x - 1).[(x - 1). (9x2 - 16x + 16)] = 0
<=> (x - 1)2.(9x2 - 16x + 16) = 0 <=> x - 1 = 0 hoặc 9x2 - 16x + 16 = 0
+) x -1 = 0 <=> x =1 (T/m)
+) 9x2 - 16x + 16 = 0 (Vô nghiệm)
Vậy...............
<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)
mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\), \(\sqrt{5\left(x^2-1\right)^2+4}\ge4\), \(2\left(x+1\right)^2\ge0\)với mọi x
=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)
'=" xảy ra<=> x+1=0<=> x=-1
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
Trả lời :
Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế
Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế
Chắc vậy
k bt
Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.
ĐK:...
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))
\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)
\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
X=15:2:6
bạn làm theo cách nào