K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Điều kiện xác định: x ≠ 3.

Giải bài 27 trang 22 SGK Toán 8 Tập 2 | Giải toán lớp 8

Suy ra: (x2 + 2x) – (3x + 6) = 0

⇔ x(x + 2) – 3(x + 2) = 0

⇔ (x – 3)(x + 2) = 0

⇔ x – 3 = 0 hoặc x + 2 = 0

+ x – 3 = 0 ⇔ x = 3 (Không thỏa mãn đkxđ)

+ x + 2 = 0 ⇔ x = -2 (Thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {-2}.

25 tháng 4 2017

tui giải câu a thôi nha

chia phương trình cho \(x^2\)ta có:

\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0

đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)

\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)

*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại

*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm x=-1

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

27 tháng 2 2020

a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)

<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)

<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)

Phương trình trên bạn tự bấm máy tính nha

<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

Đến đây tự làm đc rồi

Vậy x=1 hoặc -2 hoặc -3

b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)

<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

<=>\(\left(x+1\right)\left(x-2\right)^2=0\)

<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

c)Câu c mik chưa làm đc

27 tháng 2 2020

Đáp án câu C:

\(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)

\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)

                                       \(=\left(x-2\right)^2+1\)

       \(Mà\left(x-2\right)^2\ge0\)

       \(Nên\left(x-2\right)^2+1\ge1\)

\(Khiđó:x\left(x^2-4x+5\right)=0\)

        \(\Leftrightarrow x=0\)

4 tháng 12 2018

ĐK: \(x\ne\pm2\)

Phương trình đã cho tương đương với: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2-7\left(\frac{x+3}{x-2}.\frac{x-3}{x+2}\right)=0\)(1)

Đặt \(\frac{x+3}{x-2}=t,\frac{x-3}{x+2}=k\)

Khi đó (1) trở thành: \(t^2+6k^2-7tk=0\)

\(\Leftrightarrow t\left(t-6k\right)-k\left(t-6k\right)=0\Leftrightarrow\left(t-k\right)\left(t-6k\right)=0\Leftrightarrow\orbr{\begin{cases}t=k\\t=6k\end{cases}}\)

- Nếu t = k thì \(\frac{x+3}{x-2}=\frac{x-3}{x+2}\Rightarrow\left(x+3\right)\left(x+2\right)=\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow x^2+5x+6=x^2-5x+6\Rightarrow5x=-5x\Rightarrow x=0\)(thỏa mãn điều kiện)

- Nếu t = 6k thì \(\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\) 

\(\Rightarrow\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+5x+6=6x^2-30x+36\)

\(\Leftrightarrow6x^2-30x+36-x^2-5x-6=0\)

\(\Leftrightarrow5x^2-35x+30=0\Leftrightarrow5\left(x^2-7x+6\right)=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\) (thỏa mãn điều kiện)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1;6\right\}\)

17 tháng 1 2016

Nhân với x-1

 

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

2 tháng 3 2018

Phương trình có một nghiệm \(x=\sqrt{2}\)nên ta sẽ phân tích sao cho xuất hiện một nhân tử là \(x-\sqrt{2}\)

\(x^4+2x^3+x^2-4x-6=0\)

\(\Leftrightarrow x^4-\sqrt{2}.x^3+\left(2+\sqrt{2}\right).x^3-\left(2+2\sqrt{2}\right).x^2+\left(3+2\sqrt{2}\right).x^2-\left(4+3\sqrt{2}\right).x+3\sqrt{2}.x-6=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(x^3+\left(2+\sqrt{2}\right).x^2+\left(3+2\sqrt{2}\right).x+3\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x^3+\left(2+\sqrt{2}\right).x^2+\left(3+2\sqrt{2}\right).x+3\sqrt{2}=0\left(1\right)\end{cases}}\)

Giải \(\left(1\right)\) bấm máy tính thấy \(x=-\sqrt{2}\)nên ta sẽ phân tích sao cho có nhân tử \(x+\sqrt{2}\)

\(\left(1\right)\Leftrightarrow x^3+\sqrt{2}.x^2+2.x^2+2\sqrt{2}.x+3x+3\sqrt{2}=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right).\left(x^2+2.x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{2}\\x^2+2x+3=0\end{cases}}\)

Thấy \(x^2+2x+1\ge0\forall x\Rightarrow x^2+2x+3\ge2>0\forall x\)

Vậy phương trình có tập nghiệm \(S=\hept{ }-\sqrt{2};\sqrt{2}\)

13 tháng 3 2017

Giải phương trình \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

18 tháng 3 2020

\(\frac{x^2-x-6}{x-3}=\frac{x^2-3x+2x-6}{x-3}=\frac{x\left(x-3\right)+2\left(x-3\right)}{\left(x-3\right)}=x+2=0\Leftrightarrow x=-2\)

\(\frac{x^2+2x-\left(3x+6\right)}{x+2}=\frac{x\left(x+2\right)-3\left(x+2\right)}{x+2}=x-3=0\Leftrightarrow x=3\)

\(\frac{4}{x-2}-\left(x-2\right)=0\Leftrightarrow\frac{4}{a}-a=0\left(a=x-2\right)\Leftrightarrow\frac{4}{a}=a\Leftrightarrow a^2=4\Leftrightarrow a=\pm2\Leftrightarrow x=4\text{ hoặc 0}\)

18 tháng 3 2020

a) ĐKXĐ: x \(\ne\)3

Ta có: \(\frac{x^2-x-6}{x-3}=0\)

<=> x2 - x - 6 = 0

<=> x2 - 3x + 2x - 6 = 0

<=> (x + 2)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=3\left(vn\right)\end{cases}}\)

Vậy S = {-2}

b) ĐKXĐ: x \(\ne\)-2

Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}=0\)

<=> \(x\left(x+2\right)-3\left(x+2\right)=0\)

<=> \(\left(x-3\right)\left(x+2\right)=0\)

<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=-2\left(vn\right)\end{cases}}\)

Vậy S = {3}

c) ĐKXĐ: x \(\ne\)2

Ta có: \(\frac{4}{x-2}-x+2=0\)

<=> \(\frac{4-\left(x-2\right)^2}{x-2}=0\)

<=> \(\left(2-x+2\right)\left(2+x-2\right)=0\)

<=> \(x\left(4-x\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\4-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy S = {0; 4}