Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=x+y\); \(P=xy\); Điều kiện : \(S^2\ge4P\)
Khi đó :
\(\begin{cases}S+P=3\\S^2+S-2P=12\end{cases}\) \(\Leftrightarrow\begin{cases}P=3-S\\S^2+3S-18=0\end{cases}\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\left(S;P\right)=\left(3;0\right)\\\left(S;P\right)=\left(-6;9\right)\end{array}\right.\)
* Khi \(\left(S;P\right)=\left(3;0\right)\) ta có : \(\begin{cases}x+y=3\\xy=0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x;y\right)=\left(3;0\right)\\\left(x;y\right)=\left(0;3\right)\end{cases}\)
* Khi \(\left(S;P\right)=\left(-6;9\right)\) ta có : \(\begin{cases}x+y=-6\\xy=9\end{cases}\) \(\Leftrightarrow\begin{cases}x=-3\\y=-3\end{cases}\)
Hệ có 3 nghiệm \(\left(x;y\right)=\left(3;0\right);\left(0;3\right);\left(-3;-3\right)\)
\(\begin{cases}xy+x+y=3\\x^2+y^2+x+y=12\end{cases}\)(*) <=> \(\begin{cases}xy+x+y=3\\\left(x+y\right)^2+x+y-2xy=12\end{cases}\)(**)
Đặt S=x+y;P=xy (S2\(\ge\)4P)
HPT (**) trở thành: \(\begin{cases}P+S=3\\S^2+S-2P=12\end{cases}\)<=>\(\begin{cases}P=3-S\\S^2+3S-18=0\end{cases}\)
*S2+3S-18 =0
\(\Delta=81>0\Rightarrow\sqrt{\Delta}=9\)
=>PT có 2 nghiệm phân biệt:
\(S_1=3;S_2=-6\)
Với S=3 =>P=0 (nhận)
=>x,y là các nghiệm của PT:
\(X^2-3X=0\Leftrightarrow X\left(X-3\right)=0\Leftrightarrow X=0\) hoặc X=3
Với S=-6 =>P=9 (nhận)
=>x,y là các nghiệm của PT:
\(X^2+6x+9=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x=-3\)
Vậy HPT(*) có 3 nghiệm: (0;3);(3;0);(3;3)
Đối với casio 580 VNX bấm \(Mode\rightarrow9\rightarrow1\rightarrow2\)
a) - Đối với máy casio 570 VN Plus / 570 ES Plus : bấm \(Mode\rightarrow5\rightarrow1\) . Nhập các hệ số : \(a_1=\frac{3}{4};b_1=-\frac{7}{3};c_1=\frac{4}{5};a_2=\frac{2}{5};b_2=\frac{2}{7};c_2=\frac{2}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1412}{2169}\\y=-\frac{161}{1205}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=-\frac{913}{1064}\\y=\frac{167}{1064}\end{matrix}\right.\)
phương trình đầu tương đương với:
\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)
\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)
\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)
TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm
\(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)
\(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)
bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé
TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có
\(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)
Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\3y+z=2\\8y-4z=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\12y+4z=8\\8y-4z=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\20y=-2\\3y+z=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\y=-\dfrac{1}{10}\\z=2-3y=2+\dfrac{3}{10}=\dfrac{23}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{10}\\z=\dfrac{23}{10}\end{matrix}\right.\)