K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

4x2 - 2√3 x = 1 - √3.

⇔ 4x2 - 2√3 x – 1 + √3 = 0

Có a = 4; b’ = -√3; c = -1 + √3;

Δ’ = b'2 – ac = (-√3)2 – 4(-1 + √3) = 7 - 4√3 = 4 – 2.2.√3 + (√3)2 = (2 - √3)2.

Phương trình có hai nghiệm phân biệt:

Giải bài 20 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

16 tháng 7 2019

\(a,\sqrt{4x^2-20x+25}+2x=5\)

    \(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

  \(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)

\(b,\sqrt{1-12x+36x^2}=5\)

  \(\Rightarrow6x-1=5\)

 \(\Rightarrow6x=6\Rightarrow x=1\) 

\(c,\sqrt{x^2+x}=x\)

  \(\Rightarrow x^2+x=x^2\)

\(\Rightarrow x=0\)   

16 tháng 7 2019

\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)

\(\Rightarrow-1=0\) (vô lý)

=> PT vô nghiệm 

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
5 tháng 8 2017

a)\(2x^2+x+3=3x\sqrt{x+3}\)

ĐK:\(x\ge-3\)

\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)

\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)

\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)

.....................

b) sai đề hay vô nghiệm nhỉ

6 tháng 2 2020

Cửa hàng đã bán hết 618kg bí đỏ và 619kg cà rốt. Bí đỏ có giá bán 10 nghìn đồng 1kg và cà rốt có giá bán là 9 nghìn đồng 1kg. Hỏi cửa hàng bán bí đỏ được bao nhiêu tiền và bán cà rốt được bao nhiêu tiền?

a,    tìm trong nâng cao phát triển tập 2

b,

ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)

<=>x+3=2a2y2+4aby+2b2

<=>ax+3a=2a3y2+4a2by+2ab2

<=>ax+3a-2ab2=2a3y2+4a2by

\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)

đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

\(\Rightarrow\sqrt{2x-1}=y+1\)

sau đó đưa về hệ đối xứng là được

24 tháng 7 2017

Trên tia đối tia CB lấy F sao cho AM = 2CF

\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)

\(\Rightarrow DM=2DF\)   và  \(\widehat{ADM}=\widehat{CDF}\)  nên  \(\widehat{MDF}=90^0\)  hay  \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\)  (1)

Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\)  \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\)    (2)

(1), (2) => \(\widehat{EDF}=\widehat{DEC}\)  nên DF = EF

Lại có  \(DM=2DF=2EF=2CF+2EC=AM+2EC\)

Done!

18 tháng 4 2020

tự giải trên Symbolab

18 tháng 4 2020

CHÚ Ý

Nếu bạn nào t.i.c.k sai câu trả lời ("tự giải trên Symbolab") thì đừng có trách tui đấy.

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

3 tháng 8 2016

a/\(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+2\right)^2}=0\Leftrightarrow x-2+x+2=0\Rightarrow x=0\)

 

22 tháng 6 2018

\(x^2-4=\left(x-2\right)^2\) à chắc bn thông minh lắm mới sáng chế bđt mới đc đó

3 tháng 8 2016

a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\)  \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)

 \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

S={-2}

 

3 tháng 8 2016

b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\) 

\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)

\(\Leftrightarrow1-x^2=x+1\)

\(\Leftrightarrow-x-x^2=0\)

\(\Leftrightarrow-x\left(1+x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\) 

S={-1;0}