Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)
\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)
\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)
mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)
=> 2x + 7 = 0 => x = -7/2
Vậy x = -7/2
\(a.\Leftrightarrow\frac{3\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-9}{\left(x+1\right)\left(x-2\right)}.DKXD:x\ne-1;x\ne2\)
\(\Rightarrow3x-6-x-1=-9\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\)
\(b.\frac{\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.DKXDx\ne1;-1\)
\(\Rightarrow x^2+x-4x-4+x^2-x+4x-4=2x^2+2x-2x-2\)
\(\Leftrightarrow-6=0\left(voly\right)\)
vay \(S=\varnothing\)
\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x+1\right)}\)
\(\Leftrightarrow\frac{x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2+x+1\right)-10}{x\left(x^4+x^2+1\right)}=0\)
\(\Rightarrow x\left(x^3-1\right)-x\left(x^3+1\right)-10=0\)
\(\Leftrightarrow x^4-x-x^4-x-10=0\)
\(\Leftrightarrow-2x-10=0\)
\(\Leftrightarrow x=-5\)
Cách 1. ĐKXĐ: x ≠ ± 1. Biến đổi vế trái thành 4 x x 2 - 1 . x - 1 2 x = 2 x + 1
Ta đưa phương trình đã cho về dạng 2 x + 1 = x - 1 2 x + 1
Giải phương trình này bằng cách khử mẫu:
4(x + 1) = (x − 1)(x + 1)
⇔(x + 1)(x − 5) = 0
⇔x = −1 hoặc x = 5
Trong hai giá trị vừa tìm được, chỉ có x = 5 là thỏa mãn ĐKXĐ.
Vậy phương trình đã cho có một nghiệm duy nhất x = 5.
Cách 2. Đặt x + 1 x - 1 = y ta có phương trình y - 1 y 1 + y = 1 2 y
ĐKXĐ của phương trình này là y ≠ 0 và y ≠ −1. Giải phương trình này bằng cách khử mẫu:
2 y 2 − 2 = 1 + y
⇔2( y 2 − 1)−(y + 1) = 0
⇔(y + 1)(2y − 3) = 0
⇔y = −1 hoặc y = 3/2
Trong hai giá trị tìm được, chỉ có y = 3/2 là thỏa mãn ĐKXĐ
Vậy phương trình đã cho tương đương với phương trình x + 1 x - 1 = 3 2
Giải phương trình này ta được x = 5