K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(3x+\left(-5+x\right)=7-\left(5x-4\right)\)

=>3x-5+x=7-5x+4

=>4x-5=-5x+11

=>9x=16

=>\(x=\dfrac{16}{9}\)

b: Đề thiếu vế phải rồi bạn

c: \(2\left(x+5\right)-9x=12-4\left(2x-3\right)\)

=>2x+10-9x=12-8x+12

=>-7x+10=-8x+24

=>-7x+8x=24-10

=>x=14

d: \(x-\left(3x+1\right)=-\left(x+1\right)+21\)

=>x-3x-1=-x-1+21

=>-2x-1=-x+20

=>-2x+x=20+1

=>-x=21

=>x=-21

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

a) Ta có: \(-5x^2+3x=0\)

\(\Leftrightarrow x\left(-5x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-5x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{3}{5}\right\}\)

b) Ta có: \(1+\frac{x-1}{3}=\frac{2x+1}{6}-2\)

\(\Leftrightarrow1+\frac{x-1}{3}-\frac{2x+1}{6}+2=0\)

\(\Leftrightarrow3+\frac{x-1}{3}-\frac{2x+1}{6}=0\)

\(\Leftrightarrow\frac{18}{6}+\frac{2\left(x-1\right)}{6}-\frac{2x+1}{6}=0\)

\(\Leftrightarrow18+2x-2-2x-2=0\)

\(\Leftrightarrow14=0\)(vô lý)

Vậy: x∈∅

c) Ta có: 2-x=3(x+1)

⇔2-x=3x+3

⇔2-x-3x-3=0

⇔-4x-1=0

⇔-4x=1

hay \(x=\frac{-1}{4}\)

Vậy: \(x=\frac{-1}{4}\)

d) Ta có: 4x+7(x-2)=-9x+5

⇔4x+7x-14+9x-5=0

⇔20x-19=0

⇔20x=19

hay \(x=\frac{19}{20}\)

Vậy: \(x=\frac{19}{20}\)

e) Ta có: -4(x+3)=5(2x-9)

⇔-4x-12=10x-45

⇔-4x-12-10x+45=0

⇔-14x+33=0

⇔-14x=-33

hay \(x=\frac{33}{14}\)

Vậy: \(x=\frac{33}{14}\)

f) Ta có: \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)

\(\Leftrightarrow\frac{4\left(2x-1\right)}{12}-\frac{3\left(5x+2\right)}{12}=\frac{24x}{12}\)

\(\Leftrightarrow4\left(2x-1\right)-3\left(5x+2\right)-24x=0\)

\(\Leftrightarrow8x-4-15x-6-24x=0\)

\(\Leftrightarrow-31x-10=0\)

\(\Leftrightarrow-31x=10\)

hay \(x=\frac{-10}{31}\)

Vậy: \(x=\frac{-10}{31}\)

31 tháng 3 2020

a) \(\frac{x+5}{4}\)-\(\frac{2x-5}{3}\)=\(\frac{6x-1}{3}\)+\(\frac{2x-3}{12}\)

\(\frac{3\left(x+5\right)}{12}\)-\(\frac{4\left(2x-5\right)}{12}\)=\(\frac{4\left(6x-1\right)}{12}\)+\(\frac{2x-3}{12}\)

⇒ 3x+15-8x+20=24x-4+2x-3

⇔3x+15-8x+20-24x+4-2x+3=0

⇔-31x+42=0

⇔x=\(\frac{42}{31}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{42}{31}\)}

31 tháng 3 2020

b) \(\frac{2x+3}{3}\)=\(\frac{5-4x}{2}\)

\(\frac{2\left(2x+3\right)}{6}\)=\(\frac{3\left(5-4x\right)}{6}\)

⇒4x+6=15-12x

⇔16x=9

⇔ x=\(\frac{9}{16}\)

Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{9}{16}\)}