Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
Phương trình tương đương với :
\(4\left(2^{2x}+2^{-2x}\right)-4\left(2^x+2^{-x}\right)-7=0\)
Đặt \(t=2^{2x}+2^{-2x}\) ta có : \(t^2=2^{2x}+2^{-2x}+2\)
Phương trình trở thành :
\(4\left(t^2-2\right)-4t-7=0\)
\(\Leftrightarrow4t^2-4t-15=0\)
\(\Leftrightarrow t=\frac{5}{2}\) ( thỏa mãn) hoặc \(t=-\frac{3}{2}\) (loại)
Với \(t=\frac{5}{2}\) ta có : \(2^x+2^{-x}=\frac{5}{2}\)
Đặt \(u=2^x,u>0\Rightarrow\frac{1}{u}=2^{-x}\)
Phương trình trở thành : \(u+\frac{1}{u}=\frac{5}{2}\Rightarrow2u^2+5u+2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}u=2\\u=\frac{1}{2}\end{array}\right.\)
Khi \(u=2\Rightarrow2^x=2\Leftrightarrow x=1\)
Khi \(u=\frac{1}{2}\Rightarrow2^x=\frac{1}{2}\Leftrightarrow x=-1\)
Vậy phương trình có 2 nghiệm : \(x=\pm1\)
Đkxđ: \(x\ne\pm2\)
\(\dfrac{x^2+x-3}{x^2-4}\ge1\)\(\Leftrightarrow\dfrac{x^2+x-3}{x^2-4}-\dfrac{x^2-4}{x^2-4}\ge0\)
\(\Leftrightarrow\dfrac{x^2+x-3-x^2+4}{x^2-4}\ge0\)\(\Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\ge0\)
Đặt \(f\left(x\right)=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\ge0\).
Ta có:
TenAnh1
TenAnh1
A = (-4.12, -6.26)
A = (-4.12, -6.26)
A = (-4.12, -6.26)
B = (11.24, -6.26)
B = (11.24, -6.26)
B = (11.24, -6.26)
Vậy tập nghiệm của BPT là: ( -2 ; -1] \(\cup\)\(\left(2;+\infty\right)\).
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
\(\Leftrightarrow\) \(\begin{cases}-5\le x\le4\\-7\le x\le0\\4\le x\le5\end{cases}\) \(\Leftrightarrow\) \(-7\le x\le5\)
Vậy tập nghiệm là \(\left[-7;5\right]\)
a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.
c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.
Điều kiện xác định : \(x\ne-1\)
Phương trình đã cho tương đương với :
\(6^x.4^{x^2}=4.6^{\frac{2x}{x+1}}\Leftrightarrow4^{x^2-1}=6^{\frac{x-x^2}{x+1}}\Leftrightarrow x^2-1=\frac{x-x^2}{x+1}\log_46\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x+1\right)^2+x\log_46\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{-2-\log_46\pm\sqrt{\log^2_46+4\log_46}}{2}\end{array}\right.\) (thỏa mãn điều kiện)
2x*3x*\(4^{x^2}\)=\(\frac{4.36x}{x+1}\)
\(2^x.3^x.4^{x^2}=\frac{144x}{x+1}\)
\(2^x.3^x.4^{x^2}-\frac{144x}{x+1}=0\)
\(\frac{\left(x+1\right)2^x.3^x.4^{x^2}-144x}{x+1}=0\)
\(\left(x+1\right)2^x.3^x.4^{x^2}-144x=0\)
\(x=\frac{71}{10000}\)
Điều kiện của phương trình là 2 x 2 + 3 x - 4 ≥ 0 và 7x + 2 ≥ 0. Ta có:
Phương trình cuối có hai nghiệm x 1 = 3, x 2 = -1, nhưng giá trị x 2 = -1 không thỏa mãn điều kiện của phương tình nên bị loại, giá trị x 1 = 3 nghiệm đúng phương trình đã cho.
Vậy nghiệm của phương trình đa cho là x = 3.