K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

 

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) rút ra được: Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 (*)

Thay (*) vào phương trình (2) ta được:

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 vào (*) ta được:

Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm Giải bài 41 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

17 tháng 4 2017

Nhận cả 2 về với cần 5 con PT kia thì nhắn với (1+căn 3) rồi công đại số sẽ khu y

1 tháng 10 2020

\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)

Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)

Thay (3) vào phương trinh (2) ta được : 

\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)

\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)

\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)

\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)

\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :

\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)

\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)

Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)

1 tháng 11 2016

Ta có 

x + x2 + x3 + x4 = y + y2 + y3 + y4

<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0

<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]

<=> (x - y)(2 + 2x + 2y + xy)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)

Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp 

1 tháng 11 2016

1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)

\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)

PT này vô nghiệm vậy pt ban đầu vô nghiệm

30 tháng 10 2017

chị ơi ko biết 

2 tháng 11 2017

câu này quen ha

cái này giả sử x+1>=y-5, rồi cho chúng = nhau

hoặc liên hợp cũng được (PT1)

19 tháng 8 2017

bạn thử nhân cả 2 vế của phương trình1 với x^2+y^2 đi

20 tháng 8 2017

<=>\(\hept{\begin{cases}x^3+y^3=1\\x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\end{cases}}\)

<=>\(\hept{\begin{cases}x^3+y^3=1\\x^2y^3+x^3y^2=0\end{cases}}\)

Đặt S=x+y;P=xy

khi đó: \(\hept{\begin{cases}S^3-3SP=1\\P^2S=0\end{cases}}\)

sau đó giải hệ pt . kết wa là (0;1);(1:0)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y