K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

x 2   +   9   >   6 x   ⇔   ( x   -   3 ) 2  > 0 (đúng với mọi x)

5 tháng 4 2017

a) \(x^2-2x+3>0\)

\(\left(x-1\right)^2+2>0\) =>N0 đúng với mọi x

b)

\(x^2-6x+9>0\Leftrightarrow\left(x-3\right)^2>0\Rightarrow N_0\forall x\ne3\)

6 tháng 4 2017

a) \(2m^2-m-5>0\)(1)

\(\Delta=1+41=42\)Nghiệm của pt (1) là \(\Rightarrow m_1=\dfrac{1-\sqrt{42}}{4};m_2=\dfrac{1+\sqrt{42}}{4}\)

=> nghiệm BPT (1) là:

\(\left[{}\begin{matrix}m< \dfrac{1-\sqrt{42}}{4}\\m>\dfrac{1+\sqrt{42}}{4}\end{matrix}\right.\)

câu b

\(\Delta=1+4.9=37\)Nghiệm pt là \(m_1=\dfrac{1-\sqrt{37}}{2};m_2=\dfrac{1+\sqrt{37}}{2}\)

Nghiệm BPT là: \(\dfrac{1-\sqrt{37}}{2}< m< \dfrac{1+\sqrt{37}}{2}\)

7 tháng 4 2017

Lời giải

a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)

b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)

13 tháng 4 2017

\(\Leftrightarrow\dfrac{1}{x-1}>\dfrac{1}{x-2}-\dfrac{1}{x+2}=\dfrac{\left(x+2\right)-\left(x-2\right)}{x^2-4}=\dfrac{4}{x^2-4}\)\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{4}{x^2-4}>0\Leftrightarrow\dfrac{x^2-4-4x+4}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow A=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}>0\)

Điều kiện tồn tại A

\(\left\{{}\begin{matrix}x\ne2\\x\ne1\\x\ne-2\end{matrix}\right.\) \(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+2\right)}\)

\(\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x>1\)(1)

\(\left\{{}\begin{matrix}x< 0\\-2< x< 1\end{matrix}\right.\) \(\Rightarrow-2< x< 0\)(2)

từ (1)&(2)kết luận\(\Rightarrow\left[{}\begin{matrix}-2< x< 0\\x>1\end{matrix}\right.\)

5 tháng 4 2017

a)

x^2 +1 >0 mọi x

BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}

\(\Rightarrow-5< x< 2\)

b)

5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}

\(\Rightarrow-5< x< 3\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

5 tháng 4 2017

a) Đkxđ: \(x\ne1,x\ne0\)

x+1x1+2>x1x2x1+2>1xx+1x1+2>x1x2x1+2>1x

2x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>02x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>0

Tử {delta =9}

1<x<12T<0

0<x<1M<0

Nghiệm BPT là

[x<10<x<12 hoặc x>1

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

27 tháng 2 2016

|x - 6| < x2 - 5x + 9  (1)

Xét 2 trường hợp:

* Với x - 6 \(\ge0\) => x \(\ge6\) , (1) trở thành: x - 6 < x2 - 5x + 9 => x2 - 6x + 15 > 0          

    Có: pt x2 - 6x + 15 có \(\Delta<0\) => x2 - 6x + 15 > 0 với mọi x thuộc R

 

        => S1 = [6 ; +\(\infty\))

* Với x - 6 < 0 => x < 6 , (1) trở thành: 6 - x < x2 - 5x + 9 => x2 - 4x + 3 > 0     

     Lập bảng xét dấu:  

x \(-\infty\)                           1                                  3                     \(+\infty\)
x- 4x + 3                     +             0               -                 0          +

          => x2 - 4x + 3 > 0 khi x \(\in\) (-\(\infty\); 1) \(\cup\) (3 ; +\(\infty\))

          => S2 = (- \(\infty\); 1) \(\cup\) (3 ; 6)

Vậy S = S1 \(\cup\) S2 = (- \(\infty\) ; 1) \(\cup\)(3 ; 6]