Giá trị số tự nhiên n thỏa mãn điều kiện gì để phép chia x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

Để phép chia x n + 3 y 6   :   x 9 y n là phép chia hết thì

9 ≤ n + 3 n ≤ 6 n ∈ N ⇔ n ≥ 6 n ≤ 6 n ∈ N

=> n = 6

Đáp án cần chọn là: D

6 tháng 10 2018

Bài 1 : 

\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)

\(b)\)\(B=x^2-4x+y^2-8y+6\)

\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)

Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

Bài 2 : 

\(a)\)\(0\le n\le5\)

\(b)\)\(n\ge2\)

\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)

\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)

Chúc bạn học tốt ~ 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
12 tháng 9 2017

a.x^4:x^n=x^4-2

b,x^n:x^3=x^n-3

11 tháng 10 2018

a. x4 : xn = x4 : x2 = x2

b. xn : x3 = x4 : x3 = x

c. 5xny3 : 4x2y2 = 5x4y3 : 4x2y2

d. xnyn+1 : x2y5 = x4y6+1 : x2y5 = x4y7 : x2y5 = x2y2

Bài làm

a) 812 : 46 = 236 : 212 = 214 

b) 276 : 92 = 318 : 34 = 314 

còn tiếp....

Bài làm

c) \(\frac{9^{15}.25^3.4^3}{3^{10}.50^6}\)

\(=\frac{3^{30}.5^6.2^6}{3^{10}.2^6.5^{12}}\)

\(=\frac{3^{20}.1.1}{1.1.5^6}\)

\(=\frac{\text{3486784401}}{\text{15625}}\)

18 tháng 12 2016

4

19 tháng 12 2016

giải thích đi bn

18 tháng 8 2018

a)\(^{X^{3N+1-7}}\)

b)\(X^{n-6^{ }}y^{n+3-10}\)

c)\(X^{^{ }5-n}\)

d)\(X^{2N-5}\)

E)\(\frac{3}{2}X^{5-N}Y^{N-3}\)

K NHA

19 tháng 10 2018

Ta có : 

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

Vậy \(n=4\)

Chúc bạn học tốt ~ 

19 tháng 10 2018

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)

\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)

Chúc bạn học tốt ~ 

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3