K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Bài 1 : 

\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)

\(b)\)\(B=x^2-4x+y^2-8y+6\)

\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)

Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

Bài 2 : 

\(a)\)\(0\le n\le5\)

\(b)\)\(n\ge2\)

\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)

\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)

Chúc bạn học tốt ~ 

17 tháng 8 2020

a) Ta có : \(37^{n+1}-37^n=37^n.\left(37-1\right)=37^n.36⋮6^2\)

b) \(79^{n+5}+79^{n+4}\)

\(=79^{n+4}.\left(79+1\right)=79^{n+4}.80⋮20\)

b) \(13^{n+2}-13^{n+1}+13^n=13^n\left(13^2-13+1\right)=13^n.157⋮157\)

d) \(n^3-n=n.\left(n-1\right)\left(n+1\right)⋮6\)

e) \(n^3-4n=n.\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)

Vì \(n=2k+2\) ( Chẵn ) nên :

\(n\left(n-2\right)\left(n+2\right)=\left(2k+2\right)\left(2k+2-2\right)\left(2k+2+2\right)=8\left(k+1\right)k\left(k+2\right)⋮48\)

17 tháng 8 2020

a) 37n+1 - 37n = 37n( 37 - 1 ) = 37n.36 \(⋮\)62

b) 79n+5 + 79n+4 = 79n+4( 79 + 1 ) = 79n+4.80 \(⋮\)20

c) 13n+2 - 13n+1 + 13n = 13n( 132 - 13 + 1 ) = 13n.157 \(⋮\)157

d) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 ) \(⋮\)6

e) n3 - 4n = n( n2 - 4 ) = n( n - 2 )( n + 2 ) (*)

Vì n là số chẵn nên ta có thể đặt n = 2k 

=> (*) = 2k( 2k - 2 )( 2k + 2 ) = ( 4k2 - 4k )( 2k + 2 ) = 8k3 - 8k = 8k( k2 - 1 ) = 8k( k - 1)( k + 1 ) 

Theo ý d) => k( k - 1)( k + 1 ) \(⋮\)6

=> 8k( k - 1)( k + 1 ) chia hết cho 48 hay n3 - 4n chia hết cho 48 ( với n chẵn )

18 tháng 12 2016

4

19 tháng 12 2016

giải thích đi bn

Bài làm

a) 812 : 46 = 236 : 212 = 214 

b) 276 : 92 = 318 : 34 = 314 

còn tiếp....

Bài làm

c) \(\frac{9^{15}.25^3.4^3}{3^{10}.50^6}\)

\(=\frac{3^{30}.5^6.2^6}{3^{10}.2^6.5^{12}}\)

\(=\frac{3^{20}.1.1}{1.1.5^6}\)

\(=\frac{\text{3486784401}}{\text{15625}}\)

a: \(\dfrac{x^ny^6}{x^5y^{n-2}}=x^{n-5}y^{8-n}\)

Để đây là phép chia hết thì n-5>=0và 8-n>=0

=>5<=n<=8

b: \(\dfrac{x^6y^{n+2}}{x^ny^4z^{n-3}}=x^{6-n}y^{n-4}z^{3-n}\)

Để đây là phép chia hết thì \(\left\{{}\begin{matrix}6-n>=0\\n-4>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow n\in\varnothing\)

c: \(\dfrac{\left(\dfrac{1}{2}x^5y^{7-n}\right)}{-2x^ny^3}=-\dfrac{1}{4}x^{5-n}y^{4-n}\)

Để đây là phép chia hết thì 5-n>=0 và 4-n>=0

=>n<=4

 

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

19 tháng 10 2018

Ta có : 

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

Vậy \(n=4\)

Chúc bạn học tốt ~ 

19 tháng 10 2018

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)

\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)

Chúc bạn học tốt ~ 

10 tháng 4 2018

1/

A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)

⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0

⇔ A = \(\dfrac{2}{x-2}\) = 0

⇒ x = 2 (loại) ⇒ pt vô nghiệm

11 tháng 4 2018

về phân thức bạn .

3 tháng 4 2018

do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16 

Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8 

TH1 2^n có tận cùng là 2 => n = 4k+1 

=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10) 

ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a 

do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3 

=> a.b = a.2 chia hết cho 6 (1) 

TH2 2^n có tận cùng là 4 => n = 4k +2 

=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10) 

=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a 

=> 4(2^4k - 1) = 10 a 

ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3 

=> a.b chia hết cho 6 (2) 

Th3 2^n có tận cùng là 8 => n = 4k +3 

TH 3 2^n có tận cùng là 6 => n = 4k 

bằng cách làm tương tự ta luôn có a.b chia hết cho 6

27 tháng 3 2020

Ta có:\(2^n⋮2;10a⋮2\Rightarrow b⋮2\Rightarrow ab⋮2\)

Ta chỉ cần chứng minh \(ab⋮3\) nữa là OK

Đặt \(n=4k+r\left(0\le n\le3;k\in Z^+;r\in N\right)\)

Nếu \(r=0\Rightarrow2^n=2^{4k+0}=2^{4k}=16^k\) có tận cùng là 6 nên b=6 \(\Rightarrow ab⋮\left(đpcm\right)\)

Nếu \(r\ne0\) thì \(2^n-2^r=2^{4k+r}-2^r=2^r\left(16^k-1\right)⋮10\Rightarrow2^n\) có tận cùng là \(2^r\)

\(\Rightarrow b=2^r\Rightarrow10a=2^n-2^r=2^r\left(16^k-1\right)⋮3\Rightarrow ab⋮3\)

\(\RightarrowĐPCM\)