Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Vấn đề là có đúng 1 câu C đúng, còn lại sai hết =))
\(f'\left(x\right)\ge0\) \(\forall x\in\left(1;4\right)\) thì không có gì đảm bảo rằng khả năng \(f'\left(x\right)=0\) \(\forall x\in\left(1;4\right)\) không xảy ra cả, nó vẫn xảy ra như thường
\(f\left(x\right)\) đồng biến trên \(\left(a;b\right)\) thì \(f'\left(x\right)\ge0\) \(\forall x\in\left(a;b\right)\), đây là một khẳng định đúng
\(f'\left(x\right)\ge0\) \(\forall x\in\left(a;b\right)\) thì \(f\left(x\right)\) đồng biến trên \(\left(a;b\right)\), đây là một khẳng định sai
Khẳng định đúng phải là: \(f'\left(x\right)\ge0\) \(\forall x\in\left(a;b\right)\) và dấu bằng xảy ra tại hữu hạn điểm thì \(f\left(x\right)\) đồng biến trên \(\left(a;b\right)\)
Đề bài ko hề có đoạn quan trọng nhất "bằng 0 tại hữu hạn điểm" nên cả A, B, D đều sai :(