K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(\frac{x}{y}=\frac{7}{9}\Rightarrow\frac{x}{7}=\frac{y}{9}=k\)

\(\Rightarrow\hept{\begin{cases}x=7k\\y=9k\end{cases}}\)

16 tháng 12 2016

Không biết

16 tháng 12 2016

Biết chết liền 

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...

24 tháng 7 2017

1. \(\frac{x}{4}=\frac{y}{7}\)và \(xy=112\)

đặt \(\frac{x}{4}=\frac{y}{7}=k\)

\(\Rightarrow x=4k;y=7k\)

ta có:\(xy=4k\cdot7k=28k^2=112\)

\(\Rightarrow k^2=112:28=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

TH1: \(\hept{\begin{cases}x=2\cdot4=8\\y=2\cdot7=14\end{cases}}\)

TH2: \(\hept{\begin{cases}x=-2\cdot4=-8\\y=-2\cdot7=-14\end{cases}}\)

26 tháng 2 2017

Giải:
Ta có: \(3x^3+7=199\)

\(\Rightarrow3x^3=192\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x=4\)

\(\Rightarrow\frac{4+10}{7}=2=\frac{y+6}{9}=\frac{27-z}{11}\)

+) Xét \(\frac{y+6}{9}=2\Rightarrow y=12\)

+) Xét \(\frac{27-z}{11}=2\Rightarrow z=5\)

\(\Rightarrow x+y+z=2+12+5=19\)

Vậy x + y + z = 19

26 tháng 2 2017

@Nguyễn Huy Tú sao câu nèo mình cũng gặp bạn vậy

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

3 tháng 9 2016

Bài 1:

Cách 1: 

Ta có : x + y = xy
<=> x = xy - y
<=> x = y(x - 1)
<=> x/y = x - 1
<
V=> x + y = x - 1
=> y = -1
Có y = -1 , ta có thể tính được x :
Ta có :
x + y = xy
<=> x - 1 = -x
<=> 2x = 1
=> x = 1/2
Vậy x = 1/2 ; y = -1

Cách 2 : Tham khảo nhé :
xy = x/y <=> x = 0 hoặc y² = 1
TH1: x = 0
=> 0 + y = 0 <=> y = 0 (loại)
TH2: y = 1
=> x + 1 = x <=> 1 = 0 (loại)
TH3: y = -1
=> x - 1 = -x <=> x = 1/2
=> x = 1/2 và y = -1

Cách 3 :
x+y > 0 và 1/x + 1/y = (x+y)/xy > 0 => xy > 0 mà x+y > 0 => x > 0, y > 0 
đặt x = a/b ; y = c/d với a, b, c, d nguyên dương; (a,b) = 1 ; (c,d) = 1 
Có: 
x+y = a/b + c/d = (ad+bc)/bd = m 
1/x+1/y = b/a + d/c = (ad+bc)/ac = n ; với m, n nguyên dương 

=> { ad + bc = mbd (1*) 
---- { ad + bc = nac (2*) 

*-* (2*) => d + bc/a = nc => bc chia hết cho a 
mà a và b nguyên tố cùng nhau (hay kí hiệu là (a,b) = 1) nên c chia hết cho a 
*-* (2*) => ad/c + b = na => ad chia hết cho c 
lại có (d,c) = 1 nên a chia hết cho c 
từ hai điều trên ta có a = c 

*-* (1*) => ad/b + c = md => ad chia hết cho b 
mà (a,b) = 1 nên d chia hết cho b 
*-* (1*) => a + bc/d = mb => bc chia hết cho d 
cũng có (c,d) = 1 nên b chia hết cho d 
từ 2 điều trên (b chia hết cho d và d chia hết cho b) => b = d 
từ đây ta có kết luận: x = a/b = c/d = y 
ta ghi lại giả thiết: 
x+y = 2x = 2(a/b) = m (1**) 
1/x + 1/y = 2/x = 2(b/a) = n (2**) 

lấy (1**) * (2**) => 4 = mn ; với m, n nguyên dương ta có các khã năng là: 
* m = n = 2 => 2x = 1 => x = 1 

* { m = 1 ; n = 4 => { 2x = 1 ; 2/x = 4 => x = 1/2 

* { m = 4 ; n = 1 => { 2x = 4 ; 2/x = 1 => x = 2 

tóm lại có 3 cặp số hữu tỉ (x, y) thỏa mản là: (1,1) ; (1/2, 1/2) ; (2,2)

Bài 2: 

a) M=[(2/193−3/386).193/17+33/34]:[(7/2001+11/4002).2001/25+9/2]

=[(4/386−3/386).193/17+33/34]:[(14/4002+11/4002).2001/25+9/2]

=(1/193.2.193/17+33/34):(25/2.2001.2001/25+9/2)

=(1/34+33/34):(1/2+9/2)

=1:5=1/5