Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)
Vì \(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\Leftrightarrow\left(\frac{x+y+z}{y+z+t}\right)^3\)
\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\) (đpcm)
Đặt \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=k\)
Ta có : \(k^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\)(1)
\(k^3=\left(\frac{x}{y}\right)^3=\left(\frac{y}{z}\right)^3=\left(\frac{z}{t}\right)^3=\frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\) (2)
Từ (1) ; (2) => \(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}=\frac{x}{t}\) (đpcm)
b)
Ta có: \(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{4}=>\frac{y}{15}=\frac{z}{12}.\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) và \(x-y+z=-49.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7.\)
\(\left\{{}\begin{matrix}\frac{x}{10}=-7=>x=\left(-7\right).10=-70\\\frac{y}{15}=-7=>y=\left(-7\right).15=-105\\\frac{z}{12}=-7=>z=\left(-7\right).12=-84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-70;-105;-84\right).\)
Chúc bạn học tốt!
a) Ta có: \(\frac{x}{5}\)= \(\frac{y}{3}\) =>\(\frac{x}{25}\)= \(\frac{y}{15}\)
\(\frac{y}{5}\)= \(\frac{z}{7}\) => \(\frac{y}{15}\)= \(\frac{z}{21}\)
=> \(\frac{x}{25}\)= \(\frac{y}{15}\)= \(\frac{z}{21}\)=> \(\frac{5x}{125}\)= \(\frac{y}{15}\)= \(\frac{2z}{42}\)
Áp dụng tính chất dãy tỉ số = nhau
Ta có: \(\frac{5x}{125}\)= \(\frac{y}{15}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{125+15-42}\)= \(\frac{28}{98}\)= \(\frac{2}{7}\)
Vậy x = \(\frac{50}{7}\)
y = \(\frac{30}{7}\)
z = 6
Bạn xem lại ý sau sao lại có 2 chữ x mà ko có z nhé!
b) Ta có: \(\frac{x}{2}\)= \(\frac{y}{3}\)=> \(\frac{x}{10}\)= \(\frac{y}{15}\)
\(\frac{y}{5}\)= \(\frac{z}{4}\)=> \(\frac{y}{15}\)= \(\frac{z}{12}\)
=> \(\frac{x}{10}\)= \(\frac{y}{15}\)= \(\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số = nhau
Ta có: \(\frac{x}{10}\)= \(\frac{y}{15}\)= \(\frac{z}{12}\)= \(\frac{x-y+z}{10-15+12}\)= \(\frac{-49}{7}\)= -7
Vậy x = -70
y = -105
z = -84
c) Ta có: \(\frac{x}{3}\)= \(\frac{y}{4}\)=> \(\frac{x}{15}\)= \(\frac{y}{20}\)
\(\frac{y}{5}\)= \(\frac{z}{7}\)=> \(\frac{y}{20}\)= \(\frac{z}{28}\)
=> \(\frac{x}{15}\)= \(\frac{y}{20}\)= \(\frac{z}{28}\)= \(\frac{2x}{30}\)= \(\frac{3y}{60}\)= \(\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số = nhau
Ta có: \(\frac{2x}{30}\)= \(\frac{3y}{60}\)= \(\frac{z}{28}\)= \(\frac{2x+3y-z}{30+60-28}\)= \(\frac{186}{62}\)= 3
Vậy x = 45
y = 60
z = 84
x : y : z : t = 2 : 3 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)
\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)
Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)
\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)
x/2=y/5 ; y/3=z/4 ; z/6=t/11
<=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}\); z/6=t/11
<=> \(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}=\frac{2x+y-z+\frac{t}{2}}{2.36+90-120+\frac{220}{2}}=\frac{-76}{152}=\frac{-1}{2}\)
Từ đó => ddc x,y,z
Đặt x/y = y/z = z/t = k
=> x/y . y/z . z/t = x/t k^3 (1)
Có x/y = y/z = z/t = k = x + y + z/y + z + t(t/c dãy tỉ số bằng nhau)
=> x^3/y^3 + y^3/z^3 + z^3/t^3 = x^3 + y^3 + z^3/y^3 + z^3 + t^3 = k^3 (2)
Từ (1) và (2) => x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t = k^3
Vậy x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t