K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Bạn chắc đề đúng chứ?

Theo Maple, nếu không có điều kiện gì thêm giữa x, y, z thì không có giá trị chính xác cho biểu thức T.

MVbSgfU.png

26 tháng 3 2017

Cộng vế với vế ta được:

\(x+y+z=2\left(ax+by+cz\right)\)

Thay thích hợp ta được:

\(x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\Rightarrow1+c=\frac{x+y+z}{2z}\)

Tương tự ta có:

\(1+b=\frac{x+y+z}{2y};1+a=\frac{x+y+z}{2x}\)

Thay vào B ta có:

\(B=\sqrt{\frac{2}{\frac{x+y+z}{2x}}+\frac{2}{\frac{x+y+z}{2y}}+\frac{2}{\frac{x+y+z}{2z}}}\)

\(=\sqrt{\frac{4x}{x+y+z}+\frac{4y}{x+y+z}+\frac{4z}{x+y+z}=\frac{4\left(x+y+z\right)}{x+y+z}}\)

\(=\sqrt{4}=2\)

Đúng thì k, sai thì sửa, mai mình nộp cho cô rồi

14 tháng 12 2016

x^20+(x+1)^11=2016^y=?

26 tháng 12 2017

Từ giả thiết ta có: \(ax+by+cz=0\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)

Ta biến đổi mẫu của biểu thức A: 

\(bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(bycz+axcz+axby\right)\)

\(=bcy^2+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(bcz^2+abx^2+b^2y^2\right)+\left(bcy^2+acx^2+c^2z^2\right)+\left(acz^2+aby^2+a^2x^2\right)\)

\(=b\left(cz^2+ax^2+by^2\right)+c\left(by^2+ax^2+cz^2\right)+a\left(cz^2+by^2+ax^2\right)\)

\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

Vậy  \(A=\frac{ax^2+by^2+cz^2}{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}=\frac{1}{a+b+c}\)

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 7 2016

10. a) 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)

b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)\(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

18 tháng 7 2016

25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)

Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)

8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)