Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)
\(=\frac{x\left(x+9y\right)-3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x+3y}{x\left(x-3y\right)}\)
1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0
Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)
A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)
A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)
b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)
B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)
B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)
B = \(\frac{x+3y}{x\left(x-3y\right)}\)
\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)
\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)
\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)
\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)
(x-6)(x+6)/2x+10 * -3(x-6)= 3x+18/2x+10
(x-3y)(x+3y)/x^2y^2* 3xy/2(x-3y)=3x+9y/2xy
3(x-y)(x+y)/5xy * -15x^2y/2(X-y)=-9x/2
\(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2+3xy}\)
\(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x+3y\right)}\)
\(=\dfrac{x\left(x+9y\right)-3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{x-3y}{x\left(x+3y\right)}\)
xin hỏi bạn có viết lộn không, vế trái không có Z mà tại sao vế phải lại xuất hiện Z vậy
a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x.x}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{1\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(\frac{3x+2-12x+2+10x-8}{\left(3x-2\right)\left(3x+2\right)}=\frac{x-4}{\left(3x-2\right)\left(3+2\right)}\)
c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2a-1}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{6\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{4a^2-3a+5+2a^2-2a-a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{-12}{\left(a-1\right)\left(a^2+a+1\right)}\)
d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x-3y}{x\left(x+3y\right)}\)
e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(=\frac{3x-2}{\left(x-1\right)^2}-\frac{6}{\left(x-1\right)\left(x+1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
\(=\frac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\frac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)}-\frac{\left(3x-2\right)\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}\)
\(=\frac{3x^3+6x^2+3x+2x^2+4x+2-6x^2+6-3x^3+6x^2-3x+2x^2-4x+2}{\left(x-1\right)^2\left(x+1\right)^2}\)
\(=\frac{8x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\)
f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}=\frac{5a^2}{a^3+1}+\frac{10}{a^3+1}-\frac{15}{a^3+1}\)
\(=\frac{5a^2+10-15}{a^3+1}=\frac{5a^2-5}{a^3+1}\)
\(M=\left(\frac{1}{3}x-y\right)\left(x^2+3xy+9y^2\right)+9y^3-\frac{1}{3}x^3\)
\(=\frac{1}{3}x^3+x^2y+3xy^2-x^2y-3xy^2-9y^3+9y^3-\frac{1}{3}x^3\)
\(=\left(\frac{1}{3}x^3-\frac{1}{3}x^3\right)+\left(x^2y-x^2y\right)+\left(3xy^2-3xy^2\right)-\left(9y^3-9y^3\right)\)
\(=0\)
Vậy : Giá trị của M ko phụ thuộc vào biến x,y
=.= hk tốt!!
đk: \(x\ne0\); \(x\ne\pm3y\)
\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
\(=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)
\(=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x+3y}{x\left(x-3y\right)}\)