Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0;x\ne\pm5\)
\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)
\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow5x+25=0\)
\(\Leftrightarrow x=-5\)(ko t/m ĐKXĐ)
Vậy phương trình vô nghiệm.
ĐK: ...
c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow5x+25=0\)
\(\Leftrightarrow x=-5\)( ko t/m )
d) tương tự, ngại tính lắm
e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)
\(\frac{x+5}{x^2-5x}-\frac{x+25}{2x^2-50}=\frac{x-5}{2x^2+10x}\)
\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x+25}{2\left(x^2-25\right)}=\frac{x-5}{2x\left(x+5\right)}\)
\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow2\left(x^2+10x+25\right)-x^2-25x=x^2-10x+25\)
\(\Leftrightarrow2x^2+20x+50-x^2-25x-x^2+10x-25=0\)
\(\Leftrightarrow5x+25=0\)
\(\Leftrightarrow x=-5\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Leftrightarrow2.2x=16\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
\(\frac{x+5}{x^2-5x}-\frac{x+25}{2x^2-50}=\frac{x-5}{2x^2+10x}\) (α)
ĐKXĐ : \(x\ne0;x\ne\pm5\)
Với đk trên, ta có :
(α) ⇔ \(\frac{2\left(x+5\right)^2}{2x\left(x^2-25\right)}-\frac{x^2+25x}{2x\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{2x\left(x^2-25\right)}\)
⇔ \(2\left(x^2+10x+25\right)-x^2-25x=x^2-10x+25\)
⇔ \(2x^2+20x+50-x^2-25x=x^2-10x+25\)
⇔ \(2x^2-x^2-x^2+20x-25x+10x=25-50\)
⇔ \(5x=-25\)
⇔ \(x=-5\) (loại)
Vậy : \(S=\varnothing\)