Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}+3=0\)
\(\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+6}{2004}+1\right)+\left(\frac{x+7}{2003}+1\right)=0\)
\(\frac{x+5+2005}{2005}+\frac{x+6+2004}{2004}+\frac{x+7+2003}{2003}=0\)
\(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2012}{2003}=0\)
\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
\(x+2010=0\)
\(x=-2010\)
\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}=\frac{x-4}{2002}\)
=>\(\frac{x-1}{2005}+\frac{x-2}{2004}-\frac{x-3}{2003}-\frac{x-4}{2004}=0\)
=>\(\left(\frac{x-1}{2005}-1\right)+\left(\frac{x-2}{2004}-1\right)-\left(\frac{x-3}{2003}-1\right)-\left(\frac{x-4}{2002}-1\right)=0\)
=>\(\frac{x-1-2005}{2005}+\frac{x-2-2004}{2004}-\frac{x-3-2003}{2003}-\frac{x-4-2002}{2002}=0\)
=>\(\frac{x-2006}{2005}+\frac{x-2006}{2004}-\frac{x-2006}{2003}-\frac{x-2006}{2002}=0\)
=>\(\left(x-2006\right)\left(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
Mà \(\frac{1}{2005}+\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)
=> x - 2006 = 0 => x = 2006
\(\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
<=> \(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
<=>\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
<=>x+2010=0
<=>x=-2010
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{3004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{3}{15}-\frac{10}{15}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\Rightarrow\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=0\)
\(\Rightarrow\frac{x+1+1974}{1974}+\frac{x+2+1973}{1973}+\frac{x+3+1972}{1972}=0\)
\(\Rightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Rightarrow\left(x+1975\right)\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}=0\)
Mà \(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\ne0\)
\(\Rightarrow x+1975=0\)
\(\Rightarrow x=0+1975\)
\(\Rightarrow x=1975\)
Vậy \(x=1975\)
b) phần này làm tương tự phần a nha, chuyển -3 sang vế bên trái r cộng từng p.số vs 1 và sau đó nhóm tử số chung ra ngoài ^^
a)\(\left(\frac{2}{3}x-\frac{4}{9}\right).\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\frac{2}{3}x-\frac{4}{9}=0\)hoặc\(\frac{1}{2}+\frac{-3}{7}:x=0\)
\(\frac{2}{3}x=\frac{4}{9}\)hoặc\(-\frac{3}{7}:x=-\frac{1}{2}\)
\(x=\frac{4}{9}:\frac{2}{3}\)hoặc\(x=-\frac{3}{7}:\frac{-1}{2}\)
\(x=\frac{2}{3}\)hoặc\(x=\frac{6}{7}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)
\(\Leftrightarrow\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
\(\Leftrightarrow\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\ne0\)
\(\Leftrightarrow x=-2010\)