Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ
\(\frac{x}{3}+\frac{y}{4}+\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau . Ta có
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=\frac{1}{4}\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}\\y=2\\z=\frac{5}{2}\end{cases}\)
Vậy \(x=\frac{3}{2};y=2;=\frac{5}{2}\)
Có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\)\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tie số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)
=>\(\frac{2x^2}{18}=4\Rightarrow2x^2=18\cdot4=72\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{2y^2}{32}=4\Rightarrow2y^2=32\cdot4=128\Rightarrow y^2=64\Rightarrow y=8\)
\(\frac{3z^2}{75}=4\Rightarrow3z^2=75\cdot4=300\Rightarrow z^2=100\Rightarrow z=10\)
ta co :
x/3=y/4=z/5 => 2x^2/36=2y^2/64=3z^2/225 va 2x^2+2y^2-3z^2=100
Ap dung tinh chat day ti so bang nhau :
2x^2/36=2y^2/64=3z^2/225 = 2x^2+2y^2-3z^2/36+64-225=100/-125=-0,8
Suy ra :
2x^2/36=-0,8 => 2x^2= -0,8 . 36:2=-14,4 => x= tu tih nhe so ma co the bang mu 2 y
2y^2/64=-0,8=> 2y^2 = -0,8.64:2=- 25,6 => x= nhu tren nhe
3z^2/225=-0,8=>3z^2=-0,8.225:3=-60 = > x = nhu tren nhe
lik e
b)
Ta có: \(5x=2y.\)
\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(3y=2z.\)
\(\Rightarrow\frac{y}{z}=\frac{2}{3}\)
\(\Rightarrow\frac{y}{2}=\frac{z}{3}\) (2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{10}.\)
\(\frac{y}{10}=\frac{z}{15}.\)
=> \(\frac{x}{4}=\frac{y}{10}=\frac{z}{15}\)
=> \(\frac{2x}{8}=\frac{y}{10}=\frac{z}{15}\) và \(2x+y+z=99.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{8}=\frac{y}{10}=\frac{z}{15}=\frac{2x+y+z}{8+10+15}=\frac{99}{33}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{4}=3\Rightarrow x=3.4=12\\\frac{y}{10}=3\Rightarrow y=3.10=30\\\frac{z}{15}=3\Rightarrow z=3.15=45\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;30;45\right).\)
Chúc bạn học tốt!
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
làm tiếp cho xong lun:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{7}=\frac{z}{5}\Rightarrow\)\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x+3y-z}{2\cdot21+3\cdot28-20}=\frac{106}{106}=1\)
Suy ra: \(\frac{x}{21}=1\Rightarrow x=21\)
\(\frac{y}{28}=1\Rightarrow y=28\)
\(\frac{z}{20}=1\Rightarrow z=20\)
bạn cho chưa hết yếu tố thì phải
2x^2 + 2y = ???