\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\) và 3x-2y+2z=24

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\)

\(x=4;y=6;z=12\)

18 tháng 10 2020

c1 :đặt x/2 = y/3 = z/6 = K => x=2K ; y=3K ; z=6K

Mà 3x-2y+2z=24 => 3.2K-2.3K+2.6K=24

                           =>6K-6K+12K=24

                           =>12K=24=>K=24:12=2

=> x=2.2=4 ; y=3.2=6 ; z=6.2=12

vậy  x=4 ; y=6 ; z=12

28 tháng 9 2019

a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)

Vậy ...

b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)

Vậy ...

28 tháng 9 2019

a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)

=>\(\frac{x}{7}=\frac{12}{7}\) 

x=12

=>\(\frac{y}{3}=\frac{12}{7}\)

y=\(\frac{36}{7}\)                            

=>\(\frac{z}{4}=\frac{12}{7}\)

z=48/7

vây x=12;y=36/7;z=48/7

16 tháng 6 2016

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\)

\(\Rightarrow\begin{cases}x=2.2=4\\y=2.3=6\\z=2.6=12\end{cases}\)

16 tháng 6 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{3.2-2.3+2.6}=\frac{24}{12}=2\)

Suy ra:

\(\frac{x}{2}=2\Rightarrow x=4;\frac{y}{3}=2\Rightarrow y=6;\frac{z}{6}=2\Rightarrow z=12\)

28 tháng 8 2015

áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)

x/5=2=>x=10

y/3=2=>y=6

z/2=2=>z=4

b,áp dụng dãy tỉ số bằng nhau ta có 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\)

x/2=2=>x=4

y/3=2=>y=6

z/6=2=>z=12

mk đầu tiên nhé bạn

18 tháng 10 2020

a, Thiếu đề 

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=-\frac{24}{-4}=6\)

\(x=6;y=36;z=18\)

c, Ta có : \(3x-2y=4z\Leftrightarrow3x-2y-4z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y-4z}{6-2-12}=\frac{0}{-8}=0\)

\(x=y=z=0\)

18 tháng 10 2020

b) Đặt \(x=\frac{y}{6}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=k\\y=6k\\z=3k\end{cases}}\)

Khi đó 2x - 3y + 4z = -24

<=> 2k - 3.6k + 4.3k = -24

=> 2k - 18k + 12k = -24

=> -4k = -24

=> k = 6

=> x = 1 ; y = 36 ; z = 18

c) Đặt \(\frac{x}{2}=y=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=k\\z=3k\end{cases}}\)

Khi đó 3x - 2y = 4z

<=> 3.2k - 2k = 4.3k

=> 6k - 4k = 12k

=> 2k = 12k

=> k = 0

=> x = y = z = 0

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

6 tháng 10 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

ê nhỏ tự túc đê