Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)
a)
\(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)
\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)
Mà 2 ; 4 cùng dấu
=> x ; y cùng dấu
Vậy ........
b)
\(4x=7y\)
\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)
Mày 4 và 7 cùng dấu
=> x ; y cùng dấu
Vậy ........
Vì \(0< \frac{a}{b}< 1\) nên ta có thể giả sử a và b là 2 số nguyên dương
Do đó ta có :
\(0< a< b\Rightarrow b-a>0\)
Ta có :
\(y-x=\frac{\left(b-a\right)c}{\left(b+c\right)b}>0\)
=> y > x ( đpcm)
Các bạn xem bài làm của mình , còn thiếu sót gì mong các bạn bỏ qua.
Sgk
Ta có: \(\frac{3x-y}{x+y}=\frac{1}{2}\)
\(\Rightarrow2.\left(3x-y\right)=1.\left(x+y\right)\)
\(\Rightarrow6x-2y=x+y\)
\(\Rightarrow6x-x=2y+y\)
\(\Rightarrow5x=3y\)
\(\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Vậy \(\frac{x}{y}=\frac{3}{5}\)
\(=\frac{y+x+z+4}{x+4+y+z}=1\)
từ \(\frac{y+x}{x+4}=1\Rightarrow y+x=x+4\Rightarrow y=4\)
Có 2 cách
C1: \(\frac{x}{21}=\frac{y}{14}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{3x-7y}{63-98}=\frac{70}{-35}=-2\\ \)=> \(\hept{\begin{cases}3x=63.\left(-2\right)\\7y=98\left(-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=-42\\y=-28\end{cases}}}\)
C2
\(\frac{x}{21}=\frac{y}{14}\Rightarrow x=\frac{21}{14}y=\frac{3}{2}y\\ \)
Mà \(3x-7y=70\Rightarrow3.\frac{3}{2}y-7y=70\Rightarrow-\frac{5}{2}y=70\Rightarrow y=-28\Rightarrow x=-42\)