K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2020

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\left(x-2\right)=-4\)

\(\Rightarrow\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=-4\)

\(\Rightarrow f\left(x\right)\) liên tục tại \(x=-2\) (còn x=2 thì hàm xác định nên hiển nhiên liên tục rồi)

\(\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=3\)

\(f\left(5\right)=3\)

\(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\lim\limits_{x\rightarrow5^+}\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow f\left(x\right)\) liên tục tại \(x=5\)

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

28 tháng 5 2020

khi x \(\ne\)2 vs khi x = 2, sorry mk ghi nhầm

7 tháng 3 2023

`TXĐ: R`

`@` Nếu `x > 2` thì: `f(x)=2x+1`

   H/s xác định trên `(2;+oo)`

`=>` H/s liên tục trên `(2;+oo)`

`@` Nếu `x < 2` thì: `f(x)=x^2-3x+4`

    H/s xác định trên `(-oo;2)`

`=>` H/s liên tục trên `(-oo;2)`

`@` Nếu `x=2` thì: `f(x)=5`

`lim_{x->2^[-]} (x^2-3x+4)=2`

`lim_{x->2^[+]} (2x+1)=5`

   Vì `lim_{x->2^[-]} f(x) ne lim_{x->2^[+]} f(x) =>\cancel{exists} lim_{x->2} f(x)`

  `=>` H/s gián đoạn tại `x=2`

KL: H/s liên tục trên `(-oo;2)` và `(2;+oo)` 

      H/s gián đoạn tại `x=2`

17 tháng 5 2016

Hàm số f(x) = x3 + 2x - 1 xác định trên R và x= 3 ∈ R.

 f(x) =  (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3) 
nên hàm số đã cho liên tục tại điểm x= 3.

 

F x tại 0 =0

Lim x tới 0 =1/2

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...