Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)
\(\frac{x+1}{2}=\frac{y-3}{-1}=\frac{z+5}{3}\) hay \(\frac{x+1}{2}=\frac{2y-6}{-2}=\frac{3z+15}{9}\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2}=\frac{2y-6}{-2}=\frac{3z+15}{9}\)\(=\frac{x+1+2y-6-3z-15}{2-2-9}\)\(=\frac{8}{-9}\)
Đến đây bạn giải tiếp nha
Mình làm theo cách khác bạn Đường Quỳnh Giang nha:
Đặt \(\frac{x+1}{2}=\frac{y-3}{-1}=\frac{z+5}{3}=k\)
=> x + 1 = 2k => x = 2k - 1
y - 3 = -1k => y = -1k + 3
z + 5 = 3k => z = 3k - 5
Mà x + 2y - 3z = 28
=> ( 2k - 1 ) + 2( -1k + 3 ) - 3( 3k - 5 ) = 28
=> 2k - 1 - 2k + 6 + 9k + 15 = 28
=> ( 2k - 2k + 9k ) + ( 1 + 6 + 15 ) = 28
=> 9k + 22 = 28
=> 9k = 6
=> k =\(\frac{2}{3}\)
=> x = \(2.\frac{2}{3}-1=\frac{1}{3}\)
y = \(-1.\frac{2}{3}+3=\frac{7}{3}\)
z = \(3.\frac{2}{3}-5=-3\)
Vậy x = \(\frac{1}{3}\) ; y = \(\frac{7}{3}\) ; z = -3
Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)
\(=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)