Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\
\)
Cộng từng hạng tử của hai vế với 1
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}=\frac{x+3+2002}{2002}+\frac{x+4+2001}{2001}\)
\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2002}=0\)
\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Vì \(\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)\ne0\)nên \(x+2005=0\Rightarrow x=-2005\)
Phương trình có nghiệm duy nhất: x=2005
(x+1)/2004+(x+2)/2003=(x+3)/2002+(x+4)/2001
(x+1)/2004+1 +(x+2)/2003 +1=(x+3)/2002+1 (x+4)/2001+1
=> x+2005/2004+(x+2005)/2003-(x+2005)/2002-(x+2005)/2002=0
(x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=>x+2005=0
=>x=-2005
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2004}-\frac{x+2005}{2003}-\frac{x+2005}{2003}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\Leftrightarrow x=-2005\)
=> (x+1)/2004+1+(x+2)/2003+1=(x+3)/2002+1+(x+4)/2001+1
=> (x+2005)/2004+(x+2005)/2003=(x+2005)/2002+(x+2005)/2001
=> (x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=> x+2005=0
=> x=-2005
mấy câu này dễ mà :V câu a+c lấy mỗi phân số trừ cho 1 ra tử chung rút ra thì tính b+d thì cộng một tử chung rồi lại tính tiếp thôi
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)
\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)
\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)
\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x-2000=0\) ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )
\(\Leftrightarrow x=2000\)
Vậy x = 2000
Đây là cách của lớp 7 nha
@@ Học tốt
\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0
<=>\(\frac{x-2000}{2000}\)+ \(\frac{x-2000}{2001}\)+ \(\frac{x-2000}{2002}\)+ \(\frac{x-2000}{2003}\)=0
<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0
Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0
=> \(x-2000=0\)<=> \(x=2000\)
\(a.\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\\\Leftrightarrow \left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\\\Leftrightarrow x-23=0\left(vi\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\ne0\right)\\ \Leftrightarrow x=23\)
Này tớ làm tắt có gì cậu không hiểu nói tớ nhé
\(b.\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\\ \Leftrightarrow\frac{x+2}{98}+1+\frac{x+3}{97}+1-\left(\frac{x+4}{96}+1+\frac{x+5}{95}+1\right)=0\\\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\\\Leftrightarrow \left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\\ \Leftrightarrow x+100=0\left(Vi\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\right)\\\Leftrightarrow x=-100\)
Ta có :
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy ...
Ta có: \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$