K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)

tự làm tiếp nh đến đây dễ rồi

24 tháng 9 2017

Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4

12 tháng 5 2018

\(A=\left(5-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\right)\left(5+\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\right)\)

\(A=\left[5-\frac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\right]\left[5+\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\right]\)

\(A=\left[5-\sqrt{xy}\right]\left[5+\sqrt{xy}\right]\)

\(A=25-xy\)

vậy \(A=25-xy\)

12 tháng 5 2018

\(A=\left(5-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\right)\left(5+\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\right)\)

\(A=\left(5-\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\right)\left(5+\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\right)\)

\(A=\left(5-\sqrt{xy}\right)\left(5+\sqrt{xy}\right)\)

\(A=25-xy\)

7 tháng 8 2017

\(A=\left\{\frac{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}\left(x+y\right)}{\sqrt{x}}\right\}.\left(\frac{\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)^2.\)

=> \(A=\left(2\sqrt{xy}+x+y\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)

=> \(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=1\)

ĐS: A=1

11 tháng 8 2017

\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)

\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}\)

\(=\sqrt{y}-\sqrt{x}\)

16 tháng 6 2018

\(A=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1} \)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(A=\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)\)

\(A=x-\sqrt{x}-x-\sqrt{x}\)

\(A=-2\sqrt{x}\)

15 tháng 6 2018

A=\(\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}=\frac{ }{ }\)

2 tháng 9 2016

ĐKXĐ : \(x,y>0\)

a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)

\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)

 

b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)

 

 

 
25 tháng 9 2015

Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)

         \(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)                 (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)

         \(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

 

           \(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

          \(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)

Vậy giá trị biểu thức \(A=1.\)

 

 

 

 

         

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

 

 

24 tháng 9 2015

bài này dài lắm mk ko tiện làm