\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+2y-z=50\)khi đó x+y+ z=..........

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)

Đặt:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

Ta có:

\(x=2k\)

\(y=3k\)

\(z=5k\)

Thế vào xyz = 810, ta có:

\(2k.3k.5k=810\)

\(30.k^3=810\)

\(k^3=27\)

\(\Rightarrow k=3\)

Tới đây tự tính luôn ok :))

5 tháng 10 2016

Làm ra mấy bài này ... cũng phải tốn 30p;' của t =))

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

31 tháng 8 2015

theo dãy tỉ số bằng nhau ta có 

\(\frac{2.\left(x-1\right)+3.\left(y-2\right).-1\left(z-4\right)}{2.2+3.3-1.4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

\(=\frac{2x-2-\left(3y-6\right)+z-4}{4+9-4}=\frac{2x-2-3y+6+z-4}{9}=\frac{\left(2x+3y-z\right)-\left(2-6+4\right)}{9}\)

\(\frac{50}{9}\)

đến đây cl bạn tự làm được rồi chứ 

đặt: x-1/2=y-2/3=z-3/4=k =>  x-1=2k;y-2=3k;z-3=4k

=> x= 2k +1 ;y = 3k+2; z = 4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3y-x=50

ta được:                 

2.(2k+1)+3.(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2.5+1=11

y=3.5+2=17

z=4.5+3=23

30 tháng 8 2015

đặt: x-1/2=y-2/3=z-3/4=k =>  x-1=2k;y-2=3k;z-3=4k

=> x= 2k +1 ;y = 3k+2; z = 4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3y-x=50

ta được:                 

2.(2k+1)+3.(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2.5+1=11

y=3.5+2=17

z=4.5+3=23

30 tháng 8 2015

kết bạn với mình nha các bạn !

24 tháng 11 2015

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Âp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{45}{9}=5\)

=> x - 1 = 5.2 = 10 => x = 11

     y - 2 = 5.3 = 15 => y = 17

     z - 3 = 5.4 = 20 => z = 23

24 tháng 11 2015

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2.2+3.3-4}=\frac{2x+3y-z-5}{9}=\frac{45}{9}=5\)

x-1 =2.5 => x =11

y-2 =3.5 => y =17

z-3 =4.5 => z =23

3 tháng 8 2016

Từ

\(\frac{x}{3}+\frac{y}{4}+\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

\(\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)

Áp dụng tính chất của dãy tỉ số bằng nhau . Ta có

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=\frac{1}{4}\)

\(\Rightarrow\begin{cases}x=\frac{3}{2}\\y=2\\z=\frac{5}{2}\end{cases}\)

Vậy \(x=\frac{3}{2};y=2;=\frac{5}{2}\)

3 tháng 8 2016

Có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\)\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)

Áp dụng tính chất của dãy tie số bằng nhau ta có:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)

=>\(\frac{2x^2}{18}=4\Rightarrow2x^2=18\cdot4=72\Rightarrow x^2=36\Rightarrow x=6\)

     \(\frac{2y^2}{32}=4\Rightarrow2y^2=32\cdot4=128\Rightarrow y^2=64\Rightarrow y=8\)

     \(\frac{3z^2}{75}=4\Rightarrow3z^2=75\cdot4=300\Rightarrow z^2=100\Rightarrow z=10\)