Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
\(\Leftrightarrow\frac{!x-2!-2!4-x!-2x+8}{!4-x!+x+1}< 0\Leftrightarrow\frac{!x-2!-2!x-4!-2x+5}{!x-4!+x+1}< 0\Leftrightarrow\frac{!y!-2!y-2!-2y+1}{!y-2!+y+3}< 0\)
Chia khoảng xét:
(I) với \(y< 0\Rightarrow\left(1\right)\Leftrightarrow\frac{-y+2y-4-2y+1}{2-y+y+3}=\frac{-y-3}{5}< 0\Rightarrow y>-3\)
Kết luận(I) \(-3< y< 0\Rightarrow-1< x< 2\)
(II)với \(0\le y< 2\Rightarrow\left(1\right)\Leftrightarrow\frac{y+2y-4-2y+1}{2-y+y+3}=\frac{y-3}{5}< 0\Rightarrow y< 3\)
Kết luận(II) \(0\le y< 2\Rightarrow2\le x< 4\)
(III) với \(y\ge2\Rightarrow\left(1\right)\Leftrightarrow\frac{y-2y+4-2y+1}{y-2+y+3}=\frac{5-3y}{2y+1}< 0\Rightarrow\left[\begin{matrix}y< -\frac{1}{2}\\y>\frac{5}{3}\end{matrix}\right.\)
Kết luận(III) taco: \(\frac{5}{3}< \frac{6}{3}=2\) \(\Rightarrow y\ge2\Rightarrow x\ge4\)
Kết luận (I)(II)(III) nghiêm BPT là: \(x>1\)