\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Đề hơi nhầm 1 xíu nhé, 2004 ở dưới và 2005 ở trên :v

20 tháng 7 2016

Xét số hạng tổng quát: 

\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)

              =  \(\left(k^2+\frac{1}{2}\right)^2-k^2\)\(\left(k^2-k+\frac{1}{2}\right)\left(k^2+k+\frac{1}{2}\right)\)

Thay k từ 1 đến 2014 , ta được

M=

\(\frac{\left(2+\frac{1}{2}\right)\left(6+\frac{1.}{2}\right)...\left(4054182+\frac{1}{2}\right)\left(4058210+\frac{1}{2}\right)}{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)...\left(4050156+\frac{1}{2}\right)\left(4054182+\frac{1}{2}\right)}\)=\(\frac{4058210+\frac{1}{2}}{\frac{1}{2}}=8116421\)

21 tháng 7 2016

kết bạn nhé

21 tháng 7 2016

bn gửi nhé

20 tháng 11 2016

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

20 tháng 11 2016

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y