Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(\frac{3}{15}+\frac{1}{4}+\frac{7}{20}\right)\times\frac{17}{49}}{5\frac{1}{3}+\frac{2}{5}}=\frac{\left(\frac{1}{5}+\frac{1}{4}+\frac{7}{20}\right)\times\frac{17}{49}}{\frac{16}{3}+\frac{2}{5}}\)
=\(\frac{\left(\frac{4}{20}+\frac{5}{20}+\frac{7}{20}\right)\times\frac{17}{49}}{\frac{80}{15}+\frac{6}{15}}=\frac{\frac{16}{20}\times\frac{17}{49}}{\frac{86}{15}}=\frac{\frac{4}{5}\times\frac{17}{49}}{\frac{86}{15}}\)
=\(\frac{68}{245}\times\frac{15}{86}=\frac{102}{2107}\)
\(\frac{\left(\frac{3}{15}+\frac{1}{4}+\frac{7}{20}\right)\times\frac{17}{49}}{5\frac{1}{3}+\frac{2}{5}}\)
\(=\frac{\left(\frac{12}{60}+\frac{15}{60}+\frac{21}{60}\right)\times\frac{17}{49}}{\frac{16}{3}\times\frac{2}{5}}\)
\(=\frac{\frac{48}{60}\times\frac{17}{49}}{\frac{80}{15}+\frac{6}{15}}\)
\(=\frac{\frac{816}{2940}}{\frac{86}{15}}\)
\(=\frac{816}{2940}:\frac{86}{15}\)
\(=\frac{816}{2940}\times\frac{15}{86}\)
\(=\frac{68}{245}\times\frac{15}{86}\)
\(=\frac{102}{2107}\)
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}+\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}=\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}+\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3\left(\frac{1}{7}+\frac{1}{17}+127\right)}=\frac{1}{3}+\frac{2}{3}=\) \(1\)
\(\frac{3}{4}\cdot\frac{15}{17}+\frac{3}{4}\cdot\frac{2}{17}+\frac{1}{17}\)
\(=\frac{3}{4}\cdot\left(\frac{15}{17}+\frac{2}{17}\right)+\frac{1}{17}\)
\(=\frac{3}{4}\cdot1+\frac{1}{17}\)
\(=\frac{5}{8}\)
\(\frac{3}{4}.\frac{15}{17}+\frac{3}{4}.\frac{2}{17}+\frac{1}{17}\)
=\(\frac{3}{4}.\left(\frac{15}{17}+\frac{2}{17}\right)+\frac{1}{17}\)
=\(\frac{3}{4}.1+\frac{1}{17}\)
=\(\frac{51}{68}+\frac{4}{68}=\frac{55}{68}\)
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
\(\frac{\frac{4}{17}-\frac{4}{49}-\frac{4}{131}}{\frac{3}{17}-\frac{3}{49}-\frac{3}{131}}=\frac{4\left(\frac{1}{17}-\frac{1}{49}-\frac{1}{131}\right)}{3\left(\frac{1}{17}-\frac{1}{19}-\frac{1}{131}\right)}=\frac{4}{3}\)