Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)
Vậy B < 1
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(P=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\frac{88}{132}-\frac{33}{132}+\frac{60}{132}}{\frac{55}{132}+\frac{132}{132}-\frac{84}{132}}=\frac{\frac{115}{132}}{\frac{103}{132}}=\frac{115}{132}:\frac{103}{132}=\frac{115}{132}\cdot\frac{132}{103}=\frac{115\cdot132}{132\cdot103}=\frac{115}{103}\)
Chúc bạn học tốt!
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
\(M=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{17}{72}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{108}{72}-\dfrac{60}{72}+\dfrac{42}{72}-\dfrac{17}{72}+\dfrac{-27}{60}+\dfrac{22}{60}+\dfrac{-52}{168}+\dfrac{45}{168}\)
\(=\dfrac{73}{72}-\dfrac{1}{12}-\dfrac{1}{24}=\dfrac{73}{72}-\dfrac{6}{72}-\dfrac{3}{72}=\dfrac{64}{72}=\dfrac{8}{9}\)
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{\sqrt{x}+5-10}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
Vì \(A< \frac{1}{3}=>1-\frac{10}{\sqrt{x}+5}< \frac{1}{3}\)
\(=>1-\frac{1}{3}< \frac{10}{\sqrt{x}+5}=>\frac{2}{3}< \frac{10}{\sqrt{x}+5}\)
\(=>2.\left(\sqrt{x}+5\right)< 30=>2\sqrt{x}+10< 30=>2\sqrt{x}< 20\)
\(=>\sqrt{x}< 10=>\left(\sqrt{x}\right)^2< 10^2=>x< 100\)
Vậy x<100 thì A<1/3
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\)
=\(\frac{1.2.3..............19}{2.3.4..............20}\)
=\(\frac{1}{20}\)
A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)
M= \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}\)
=\(\frac{3.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}\)
=\(\frac{3}{4}\)
Học nhiều quá quên mất bài dễ này rồi
chuan