K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2019

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

27 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\) Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\) Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng...
Đọc tiếp

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)

Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)

Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất

Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:

\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)

Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)

Bài 5, Tìm giá trị x,y,z để biểu thức

\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất

Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)

Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)

0
21 tháng 8 2020

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow a=b=c\)

21 tháng 8 2020

a. \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

18 tháng 7 2016

ffjgukgkkgk

23 tháng 3 2018

Ngu người 

24 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~