\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)

\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)

\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)

\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

2 tháng 7 2019

đề viết gì thế bạn ?

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Lời giải:

Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)

--------------------------

Áp dụng BĐT AM-GM:

\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)

\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)

Lại theo BĐT AM-GM:

\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)

Và:

\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)

\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 11 2019

Dấu "=" xảy ra khi $a=b=c=\frac{1}{4}$

22 tháng 7 2019

Nhầm rồi nhé, thay a=b=c=1/3 thì phải ra là (10/3)^3 chứ

4 tháng 8 2017

abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)

Đặt \(a=\frac{1}{x}\);  \(b=\frac{1}{y}\);   \(c=\frac{1}{z}\)(x, y, z > 0)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)

Tương tự, ta có :

\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)

\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)

Ta cần cm :   \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Áp dụng bđt Cau chy cho x, y, z > 0

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Ta cần cm :    \(\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Leftrightarrow x+y+z\ge3\)

Áp dụng bđt Cauchy cho x, y, z> 0

\(x+y+z\ge3\sqrt[3]{xyz}=3\)

30 tháng 8 2020

trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm 

Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :

\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)

\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Svac-xơ ta có : 

\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)

\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :

\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

5 tháng 8 2017

Khai triển, BĐT cần chứng minh tương đương 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Áp dụng AM-GM:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}}\)

\(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{b^2}{ac}}=\frac{3b}{\sqrt[3]{abc}}\)

\(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3\sqrt[3]{\frac{c^2}{ab}}=\frac{3c}{\sqrt[3]{abc}}\)

Cộng theo vế: \(3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)

Còn chứng minh \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a+b+c}{\sqrt[3]{abc}}\) hoàn toàn tương tự.Ta thu được đpcm

Dấu = xảy ra khi a=b=c