Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)
\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)
Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)
\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)
\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)
\(\Rightarrow a-2\sqrt{a}+1-2=0\)
\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)
\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)
\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)
\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)
\(=\frac{1-a}{\sqrt{a}}\)
a) \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)
\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Để A=2 \(\Leftrightarrow a-\sqrt{a}=2\)
\(\Leftrightarrow a-\sqrt{a}-2=0\)
\(\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\)
\(\Leftrightarrow\sqrt{a}-2=0\left(Vì\sqrt{a}+1\ne0\right)\)
\(\Leftrightarrow a=4\) (TM)
Vậy a=4 thì A=2
c) \(A=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)
Vì: \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)
=> \(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN của A là \(-\frac{1}{4}\) khi \(a=\frac{1}{4}\)
\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)
\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)
\(=\frac{2a^2-2a}{a^2-a}\)
\(=2\)( 1 )
\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)
\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)
\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )
Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)
Câu b,c em chịu:((
P/S:e ko bt đúng hay sai đâu ạ
Mk giải nốt phần còn lại nha
sai thì thông cảm
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)
\(\Leftrightarrow2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)
\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)
\(\Leftrightarrow a\ne1;a\ge0\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
a) \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\frac{\sqrt{a}.\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right).\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1=a-\sqrt{a}\)
b)Ta có a>0 do đó: \(P=a-\sqrt{a}\ge0\)
Dấu "=" xảy ra khi a=1
c) Ta thấy \(P\ge0\)
=>P2\(\ge\)P
=>P\(\ge\)\(\sqrt{P}\)
ĐKXĐ: \(a>0\)
a/ \(P=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
b/ Ta có: \(\hept{\begin{cases}a>0\\\sqrt{a}\ge0\end{cases}\Rightarrow a-\sqrt{a}\ge0}\)
MinP = 0 khi \(\sqrt{a}=0\Rightarrow a=0\)
c/ \(P\ge\sqrt{P}\)
a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)
b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)
\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)
\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)
\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)
\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)
\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)
=> a = 4
Cách ngắn hơn :
\(đkxđ\Leftrightarrow x\ge0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(b,A=2\Rightarrow a-\sqrt{a}=2\)
\(\Rightarrow a-\sqrt{a}-2=0\)
\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)
\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)
\(\Rightarrow a=4\)
\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)
Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)