Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
Hy vọng a;b;c dương
Khi đó: \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\) ; \(\frac{b^2}{c^2}+1\ge\frac{2b}{c}\) ; \(\frac{c^2}{a^2}+1\ge\frac{2c}{a}\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt[3]{\frac{abc}{abc}}-3\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:
\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\) (1)
CMTT ta được
\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\) (2)
\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\) (3)
Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\) (*)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:
\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Thay vào pt (*) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
k tớ nha !!!
Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)
ta có\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}=2\frac{a}{c}\)
tương tự:\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{c}{b}\)
Cộng 3 về bất đẳng thức trên lại với nhau ta đươc:\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng BĐT Cô - si cho các số dương ta có :
+ ) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\left(1\right)\)
Cmt ta có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\left(2\right)\)
+ ) \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\left(3\right)\)
Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức AM-GM:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\sqrt{\frac{a^2}{c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Chứng minh tương tự: \(\hept{\begin{cases}\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{cases}}\)
Cộng theo vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu "=" khi \(a=b=c\)
Cho thêm a,b,c dương nữa nhé :)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}\cdot\frac{c^2}{a^2}}=2\sqrt{\frac{b^2}{a^2}}=\frac{2b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\sqrt{\frac{c^2}{a^2}\cdot\frac{a^2}{b^2}}=2\sqrt{\frac{c^2}{b^2}}=\frac{2c}{b}\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{2a^2}{b}+\frac{2b^2}{c}+\frac{2c^2}{a}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)
\(\Leftrightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
Đẳng thức xảy ra khi \(a=b=c\)