K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}=\frac{a_1-1+a_2-2+a_3-3+...+a_{100}-100}{100+99+98+...+1}\)

\(=\frac{\left(a_1+a_2+a_3+...+a_{100}\right)-\left(1+2+3+...+100\right)}{5050}=\frac{10100-5050}{5050}=1\)

\(\text{Suy ra : }\frac{a_1-1}{100}=1\Rightarrow a_1-1=100\Rightarrow a_1=101\)

\(\frac{a_2-2}{98}=1\Rightarrow a_2-2=98\Rightarrow a_2=101\)

..................

tương tự như thế ta được;

\(a_1=a_2=...=a_{100}=101\)

28 tháng 11 2016

b,ấp dụng tính chất dãy tỉ số = nhau ta có:

\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\)  = 1

từ \(\frac{a1-1}{100}\) = 1  suy ra :a1-1=100 =) a1=101

........................................................................

từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101

vậy a1=a2=a3=...=a100=101

4 tháng 11 2018

Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:

a) Tam giác FEC đồng dạng với tam giác FBD

b) Tam giác AED đồng dạng với tam giác HAC

c) Tính BC, AH, AC

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

8 tháng 3 2017

a100=101

4 tháng 1 2017

Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)

Từ (1) và (2)

=> S = -5

8 tháng 1 2017

sao tự hỏi rồi tự trả lời vậy bạn :)

4 tháng 1 2017

Ta có \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\) (do \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}\))

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1) Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}\)(2)

Từ (1) và (2) suy ra \(S=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}=-5\)