Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9.11+19.9}{27.5-27.15}=\frac{9.\left(11+19\right)}{27.\left(5-15\right)}=\frac{9.30}{3.9.\left(-10\right)}=\frac{30}{3.\left(-10\right)}=\frac{30}{-30}=-1\)
a) Ý bạn là: \(S_1=\frac{3}{4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)đúng không?
\(S_1=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(S_1=1-\frac{1}{43}< 1\left(đpcm\right)\)
b) \(S_2=\frac{6}{2\cdot5}+\frac{6}{5.8}+\frac{6}{8\cdot11}+...+\frac{6}{29\cdot32}\)
=>\(\frac{S_2}{2}=\frac{3}{2\cdot5}+\frac{3}{5.8}+\frac{3}{8\cdot11}+...+\frac{3}{29\cdot32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}=\frac{15}{32}\)
=>\(S_2=\frac{15}{32}\cdot2=\frac{15}{16}< 1\left(đpcm\right)\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+...+\frac{99}{101.200}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}=\frac{39}{100}\)
\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}\)
\(=\frac{39}{100}\)
Ta có: \(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}\) = \(\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}\) = \(\frac{2^5.8}{2^5.22}\) = \(\frac{8}{22}\) =\(\frac{56}{154}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}\) = \(\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}\) = \(\frac{3^4.\left(-4\right)}{3^4.14}\) = \(\frac{-4}{14}\)= \(\frac{-44}{154}\)
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+3}=-\frac{3}{10}\)
\(\Leftrightarrow1\cdot10=-3\left(x+3\right)\)
\(\Leftrightarrow10=-3x-9\)
\(\Leftrightarrow10+9=-3x\)
\(\Leftrightarrow19=-3x\)
\(\Leftrightarrow x=-\frac{19}{3}\)
Đề sai à -.-
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
=> \(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{1}{6}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{1}{6}\cdot3=\frac{1}{2}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}\)
=> \(10=-3\left(x+3\right)\)
=> 10 = -9x - 9
=> 10 + 9x + 9 = 0
=> 19 + 9x = 0
=> 9x = -19
=> x = -19/9
=> D = 1/2-1/5+1/5-1/8+....+ 1/62-1/65
=> D= 1/2-1/65
=> D=63/130
VẬY D=63/130
\(D=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\cdot\cdot\cdot+\frac{3}{62\cdot65}\)
\(\Rightarrow D=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\cdot\cdot\cdot+\frac{1}{62}-\frac{1}{65}\)
\(\Rightarrow D=\frac{1}{2}-\frac{1}{65}\)
\(\Rightarrow D=\frac{63}{130}\)
\(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{299.302}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..+\frac{3}{299.302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{299}-\frac{1}{302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{302}\right)=2.\frac{75}{151}=\frac{150}{151}\)
\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right).107-53}{53.107+54}\)
\(=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right)269-133}{134.269+135}\)
\(=\frac{134.269+269-133}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow B>A\)