Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tử : \(1.3.5.....99\)
\(=\frac{1.2.3.4.....98.99.100}{2.4.6.....100}\)
\(=\frac{\left(1.2.3.....50\right)\left(51.52.....99.100\right)}{\left(1.2\right).\left(2.2\right).....\left(50.2\right)}\)
\(=\frac{\left(1.2.3.....50.\right).\left(51.52.....100\right)}{\left(1.2.3.....50\right).2.2.....2}\)
\(=\frac{51.52.....100}{2.2....2}\)
\(=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
Ta được phân số\(\frac{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}}{51.52.....100}\)
\(=\frac{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}}{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}.2.2.....2}\)
\(=\frac{1}{2.2.....2}\)
\(=\frac{1}{2^{50}}\)
Ta có \(1.3.5...99=\frac{1.2.3.4.5...100}{2.4.6...100}=\frac{1.2.3.4.5....100}{2^{50}.1.2.3.4...50}=\frac{51.52.53...100}{2^{50}}\left(\text{đpcm}\right)\)
Ta có : \(1.3.5....99=\frac{1.2.3.4.5....100}{2.4.6...100}=\frac{1.2.3.4.5....1000}{2^{50}.1.2.3.4....50}=\frac{51.51.53....100}{2^{50}}\)( đpcm )
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)
= \(\frac{5050}{51}\)
\(M=\frac{1.3.5...2011.2013}{1008.1009.1010...2013.2014}\)
\(M=\frac{1.2.3.4.5.6...2011.2012.2013.2014}{\left(2.4.6...2014\right).1008.1009.1010....2013.2014}\)
\(M=\frac{1.2.3.4.5.6...2011.2012.2013.2014}{2^{1007}.\left(1.2.3...1007\right).1008.1009.1010...2013.2014}\)
\(M=\frac{1}{2^{1007}}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}\)
\(A=\left(\frac{2.3....99}{1.2....98}\right).\left(\frac{2.3....99}{3.4....100}\right)\)
\(A=\frac{99}{1}.\frac{2}{100}\)
\(A=\frac{198}{100}\)
\(\frac{51.52.53...100}{1.3.5...99}\)
\(=\frac{\left(2.4.6...100\right).\left(51.52.53...100\right)}{\left(2.4.6...100\right).\left(1.3.5...99\right)}\)
\(=\frac{\left(2.4.6...100\right).\left(51.52.53...100\right)}{1.2.3.4.5.6...99.100}\)
\(=\frac{2.4.6...100}{1.2.3...50}\)
\(=\frac{\left(2.2...2\right).\left(1.2.3...50\right)}{1.2.3...50}\)
\(=2.2.2...2\)
\(=2^{50}\)
sao hỏi khó zzzzzzzzậy