K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

\(\frac{4^3\cdot9^3}{8^2\cdot81^2}=\frac{2^6\cdot3^6}{2^6\cdot3^8}=\frac{1}{3^2}=\frac{1}{9}\)

29 tháng 6 2016

\(\frac{4^3.9^3}{8^2.81^2}=\frac{\left(2^2\right)^3.\left(3^2\right)^3}{\left(2^3\right)^2.\left(3^4\right)^2}=\frac{2^6.3^6}{2^6.3^8}=\frac{1}{9}\)

29 tháng 6 2016

\(\frac{125^3.27^4}{25^4.9^5}\)

\(=\frac{5^9.3^{12}}{5^8.3^{10}}\)

\(=5.3^2\)

\(=45\)

29 tháng 6 2016

\(\frac{125^3.27^4}{25^4.9^5}\)

\(=\frac{25^3.3^3.9^4.3^4}{25^4.9^5}\)

\(=\frac{3^3.3^4}{25.9}\)

\(=\frac{2187}{225}\)

\(=45\)

10 tháng 12 2016

-3^4.4^4/2^2.6^2

=(-3x4)^4/(2x6)^2

=(-12)^4/12^2

=(-12)^2

=144

13 tháng 8 2017

Ta có:

\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) và \(y-x=4\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)

\(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.4=2\\\frac{y}{8}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.8=4\\\frac{z}{15}=\frac{1}{2}\Rightarrow z=\frac{1}{2}.15=7,5\end{cases}}\)

Vậy \(x=2;y=4;z=7,5\)

25 tháng 8 2018

Bài 1:

\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)

\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)

Bài 2:

\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)

<=>  \(\frac{7}{8}-x=\frac{27}{40}\)

<=>  \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)

Vậy...

25 tháng 8 2018

bài 2 mình tính sai, sửa

.......

<=>  \(\frac{7}{8}-x=\frac{37}{40}\)

<=>  \(x=\frac{7}{8}-\frac{37}{40}=\frac{-1}{20}\)

Vậy....

20 tháng 11 2017

Đ/A đây:

=\(\frac{2^{15}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}\)

=\(\frac{2^{12}.3^5.\left(2^3-3\right)}{2^{12}.3^5.\left(3+1\right)}\)

                                               cố lên

=\(\frac{5}{4}\)

12 tháng 5 2022

\(=\dfrac{\left(2^3\right)^3.\left(3^2\right)^4-2^8.\left(3^4\right)^2}{\left(2^4\right)^2.\left(3^4\right)^2+\left(2^2\right)^4.\left(3^3\right)^3}=\dfrac{2^9.3^8-2^8.3^8}{2^8.3^8+2^8.3^9}=\)

\(=\dfrac{2^8.3^8.\left(2-1\right)}{2^8.3^8.\left(1+3\right)}=\dfrac{1}{4}\)