K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

\(\frac{4^{20}-2^{20}-6^{20}}{6^{20}-3^{20}-9^{20}}=\frac{2^{20}.2^{20}-2^{20}-2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}-3^{20}.3^{20}}\)

\(=\frac{2^{20}\left(2^{20}-1-3^{20}\right)}{3^{20}\left(2^{20}-1-3^{20}\right)}=\frac{2^{20}}{3^{20}}\)

17 tháng 2 2020

Rút gọn biểu thức trên nha.

\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)

\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)

vậy M=20

21 tháng 2 2021

\(M=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)

\(=\frac{2.6.10.\left(1+2+3+...+10\right)}{1.2.3.\left(1+2+3+...+10\right)}\)

\(=20\)

\(=\dfrac{57}{20}-\dfrac{26}{15}+6.45:3\)

\(=\dfrac{58\cdot3-26\cdot2}{60}+\dfrac{43}{20}\)

\(=\dfrac{122}{60}+\dfrac{129}{60}=\dfrac{251}{60}\)

30 tháng 3 2018

\(2\frac{17}{20}-1\frac{11}{15}+6\frac{9}{20}:3\)

\(=2\frac{17}{20}-1\frac{11}{15}+2\frac{3}{20}\)

\(=1\frac{7}{60}+2\frac{3}{20}\)

\(=3\frac{4}{15}\)

31 tháng 5 2017

\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)

\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)

\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)

\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)

\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)

\(S=2014\)

31 tháng 5 2017

S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)

S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)

S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)

đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)

A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)

A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)

A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)

A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)

Thay A vào ta được :

S = \(2016+2016.\frac{1007}{1008}\)

S = \(2016.\left(1+\frac{1007}{1008}\right)\)

S = \(2016.\frac{2015}{1008}\)

S = \(4030\)

2 tháng 12 2016

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{1^{20}+1^{20}}{1^{25}+8^5}=\frac{1}{32769}\)

\(N=\frac{6^6+6^3\cdot3^3+3^6}{73}=\frac{53217}{73}=729\)

T khó quá!

18 tháng 4 2019

kho qua

18 tháng 4 2019

\(1\frac{17}{20}-1\frac{11}{15}+6\frac{9}{20}:3\)

\(=\frac{37}{20}-\frac{26}{15}+\frac{129}{20}:3\)

\(=\frac{37}{20}-\frac{26}{15}+\frac{43}{20}\)

\(=\frac{34}{15}\)