\(\frac{3\sqrt{x}}{x+2}\) tìm các số thực x

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(\sqrt{\frac{3+x^2}{x}}.\sqrt{x}+\sqrt{\frac{3+y^2}{y}}.\sqrt{y}+\sqrt{\frac{3+z^2}{z}}.\sqrt{z}\right)^2\) \(\le\left(\frac{3+x^2}{x}+\frac{3+y^2}{y}+\frac{3+z^2}{z}\right)\left(x+y+z\right)\)

\(\Rightarrow\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\) \(\le\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+x+y+z\right)\left(x+y+z\right)\)

Kết hợp giải thiết:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\) suy ra:

\(\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\le4.\left(x+y+z\right)^2\)

Do đó:

\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\le2.\left(x+y+z\right)\) \(\left(1\right)\)

Theo giải thiết ta có:

\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}=2x+2y+2z\)

Do đó xảy ra đẳng thức ở \(\left(1\right)\) tức là:

\(\hept{\begin{cases}\frac{3+x^2}{x}=\frac{3+y^2}{y}=\frac{3+z^2}{z}\\\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\end{cases}}\)  \(\Leftrightarrow x=y=z=1\)

Thử lại thấy bộ số \(\left(x,y,z\right)=\left(1,1,1\right)\) thỏa mãn.

3 tháng 2 2020

x, y, z là số thực 

Làm sao có thể sử dụng \(\sqrt{x}\)

25 tháng 10 2020

chỉ cần n/x x+2/x và x-2/x ko cùng nguyên đc nên x- căn 3 ; x^2+2căn 3 là nguyên

\(a+\sqrt{3}=x\left(a\text{ nguyên}\right)\Rightarrow x^2+2\sqrt{3}=a^2+2\sqrt{3}a+2\sqrt{3}+3\text{ nguyên khi:}2\sqrt{3}\left(a+1\right)\)

nguyên vô lí

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)

27 tháng 9 2019

1. 

\(DK:x\ge2\)

\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)

\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)

PT(2) khac khong voi moi \(x\ge2\)

Vay nghiem cua PT la \(x=3\)

27 tháng 9 2019

\(x^3+2x=y^2-2009\)

\(\Leftrightarrow x^3-x=y^2-3x-2009\)

\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)

Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3 

Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 ) 

Vậy pt vô nghiệm

27 tháng 10 2020

Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

3 tháng 1 2019

chu vi của một hình chữ nhật là 96cm . Nếu thêm vào chiều rộng 3cm và bớt ở chiều dài đi 3cm . Thì hình chữ nhật đó thành hình vuông . Tính diện tích hình chữ nhật đó

12 tháng 9 2016

\(Q=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\)\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow Q\ge1\).Vậy MinQ=1

8 tháng 8 2020

\(Q=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^4+8xy^3=x^4+8.xy.y^2\le x^4+4\left(x^2y^2+y^4\right)=\left(x^2+2y^2\right)^2\)

\(\Rightarrow\frac{x^2}{\sqrt{x^3+8xy^3}}\ge\frac{x^2}{x^2+2y^2}\)

\(\sqrt{y\left(y^3+\left(x+y\right)^3\right)}=\sqrt{\left(xy+2y^2\right)\left(x^2+y^2+xy\right)}\le\frac{x^2+3y^2+2xy}{2}=\frac{2y^2+\left(x+y\right)^2}{2}\)

\(\le\frac{2y^2+2\left(x^2+y^2\right)}{2}=x^2+2y^2\)

\(\Rightarrow Q\ge\frac{x^2}{x^2+2y^2}+\frac{2y^2}{x^2+2y^2}=1\)

Vậy minQ= 1 tại \(x=y>0\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!