Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
\(B=\frac{2.4+2.4.8+4.8.16+8.16.32}{3.4+2.6.8+4.12.16+8.24.32}\)
\(B=\frac{2.4+2.4.8+4.2.4.16+2.4.16.32}{3.4+2.2.3.2.4+4.3.4.16+2.4.8.3.32}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+2.2.2+4.16+2.8.32\right)}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+8+4.16+16.32\right)}\)
\(B=\frac{2}{3}\)
Chúc bn học tốt !!!!
=\(\frac{6\left(1+8+27+64\right)}{12\left(1+16+54+128\right)}\)
=\(\frac{6.100}{12.199}\)
=\(\frac{50}{199}\)
Tk mình với nha mọi người!!!!!
\(\frac{1x2x3+2x4x6+3x6x9+4x8x12}{1x3x4+4x6x8+6x9x12+8x12x16}\)
\(\frac{6x\left(1+8+27+64\right)}{12x\left(1+16+54+128\right)}=\frac{6x100}{12x199}=\frac{50}{199}\)
Đặt \(D=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)
=>\(2D=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\)
=>\(2D=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\)
=>\(2D=\frac{1}{2}-\frac{1}{100}\)
=>\(2D=\frac{49}{100}\)
=>\(D=\frac{49}{50}\)
a , \(\frac{3.4.5}{10.2.6}=\frac{3.2.2.5}{5.2.2.3.2}=\frac{1}{2}\)
b , \(\frac{6.8.12.16}{4.12.8.6}=\frac{6.8.12.4.4}{4.12.8.6}=4\)
HAPPY NEW YEAR
CHÚC MỪNG NĂM MỚI
\(\frac{3}{2.4}+\frac{3}{4.6}+....+\frac{3}{98.100}\)
\(=\frac{3}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)