Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)
\(A=-\frac{7}{33}+-2\)
\(A=-\frac{73}{33}\)
[ A] = -2
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)
\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)
\(\Rightarrow99x+1+2+3+...+99=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow-x=-4950\)
\(\Rightarrow x=4950\)
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)
\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)
\(\Rightarrow50x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)
\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
tu lam
\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)
\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow x=4950\)(t/m đk x > = 0)
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)
\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)
Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)
\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)
\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)
\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(50x=1-\frac{1}{100}\)
\(50x=\frac{99}{100}\)
\(x=\frac{99}{5000}\)
Do \(\left|a\right|\ge0\forall a\) nên:
\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)
\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)
Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)
\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)
\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)
B= 333300
C=328350
D=(n+1) /( n nhân 2)
E=(1/3 trừ 1/3^100):2
1)=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3
3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3B=99.100.101
=>B=333300
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{x.\left(x+1\right)}=\frac{11}{4}\)
\(3.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{11}{4}\)
\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{11}{4}\)
\(3.\left(1-\frac{1}{x+1}\right)=\frac{11}{4}\)
\(1-\frac{1}{x+1}=\frac{11}{4}:3=\frac{11}{12}\)
\(\frac{1}{x+1}=1-\frac{11}{12}=\frac{1}{12}\)
\(\Rightarrow x+1=12\)
\(\Rightarrow x=12-1\)
\(\Rightarrow x=11\)