K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

\(1\frac{1}{3}=\frac{4}{3};25\%=\frac{1}{4}\)

\(\frac{4}{3}\)đâu có bằng \(\frac{1}{4}\)

đề sai à

10 tháng 5 2018

Mk cũng ko bt nữa bạn......tại thấy giáo của mk ra đề như thế đấy !

5 tháng 5 2019

A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2

1/2^2 < 1/1*2

1/3^2 < 1/2*3

1/4^2 < 1/3*4

...

1/100^2 < 1/99*100

=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100

=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

=> A < 1 - 1/100

=> A < 1

minh deo can ban k dau :((

5 tháng 5 2019

\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)

\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)

\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)

\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)

\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)

\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)

Vậy x = 42/11

23 tháng 4 2017

1/

+) \(\frac{3}{6}=\frac{2}{4};\frac{3}{2}=\frac{6}{4};\frac{4}{6}=\frac{2}{3};\frac{4}{2}=\frac{6}{3}\)

2/

\(A=\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\)

Để A nguyên <=> n + 4 thuộc Ư(17) = {1;-1;17;-17}

n+41-117-17
n-3-513-21

Vậy...

3/

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

23 tháng 4 2017

\(A=\frac{3n+12-7}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{7}{n+4}=3-\frac{7}{n+4}\)

=> n-4 \(\in\) Ư (7)

n-4=1

n=4+1=5

n-4=-1

n=-1+4=3

n-4=7

n=4+7=11

n-4=-7

n=-7+4=-3

8 tháng 2 2019

a) \(x^3-\frac{4}{25}x=0\)

\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)

<=> x = 0

Xét 2 trường hợp: 

\(\Leftrightarrow x+\frac{2}{5}=0\)

      \(x=0-\frac{2}{5}\)

      \(x=-\frac{2}{5}\)

\(\Leftrightarrow x-\frac{2}{5}=0\)

      \(x=0+\frac{2}{5}\)

      \(x=\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)

b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)

\(=\frac{13}{40}:\frac{4}{3}\)

\(=\frac{39}{120}=\frac{13}{40}\)

c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)

\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)

\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)

\(=-\frac{5}{2}-1\)

\(=-\frac{7}{2}\)

6 tháng 8 2018

\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)

\(\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)

\(\Rightarrow94< x< 92\)

mà x là số tựu nhiên => \(x\in\varnothing\)

11 tháng 4 2019

\(a,\left[\frac{4}{5}+\frac{2}{3}\right]:\frac{1}{5}-1,4\cdot\left[\frac{-5}{7}\right]^2\)

\(=\left[\frac{4\cdot3}{15}+\frac{2\cdot5}{15}\right]:\frac{1}{5}-1,4\cdot\frac{-5}{7}\cdot\frac{-5}{7}\)

\(=\left[\frac{12}{15}+\frac{10}{15}\right]:\frac{1}{5}-\frac{14}{10}\cdot\frac{25}{49}\)

\(=\frac{22}{15}:\frac{1}{5}-\frac{7}{5}\cdot\frac{25}{49}\)

\(=\frac{22}{15}\cdot\frac{5}{1}-\frac{7}{5}\cdot\frac{25}{49}\)

\(=\frac{22\cdot5}{15\cdot1}-\frac{7\cdot25}{5\cdot49}=\frac{22\cdot1}{3\cdot1}-\frac{1\cdot5}{1\cdot7}=\frac{22}{3}-\frac{5}{7}\)

= ...

Tự tính

Bài 2 : \(a,3-\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}\)

\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}+3\)

\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{2}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{23}{3}\\x=\frac{-19}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{23}{3};\frac{-19}{3}\right\}\)

b, \(0,6-160\%< x\le3\frac{2}{3}:\frac{22}{18}\)

\(\Rightarrow0,6-\frac{160}{100}< x\le\frac{11}{3}:\frac{22}{18}\)

\(\Rightarrow0,6-\frac{8}{5}< x\le\frac{11}{3}\cdot\frac{18}{22}\)

\(\Rightarrow0,6-1,6< x\le3\)

\(\Rightarrow-1< x\le3\)

\(\Rightarrow x\in\left\{0;1;2;3\right\}\)