Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(-\frac{13}{6}:\frac{25}{7}+\frac{7}{25}.\left(-\frac{17}{6}\right)\)
\(=-\frac{13}{6}.\frac{7}{25}+\frac{7}{25}.\left(-\frac{17}{6}\right)\)
\(=\frac{7}{25}.\left[\left(-\frac{13}{6}\right)+\left(-\frac{17}{6}\right)\right]\)
\(=\frac{7}{25}.\left(-\frac{30}{6}\right)\)
\(=-\frac{7}{5}\)
b. \(\frac{-4^5.3^5}{2^4.6^4}+2015^0=\frac{\left(-4.3\right)^5}{\left(2.6\right)^4}+1=\frac{-12^5}{12^4}+1=-12+1=-11\)
a) \(\frac{-13.7}{6.25}\)+ \(\frac{-7.17}{25.6}\)=\(\frac{-210}{210}\)=-1
b) \(\frac{-4^4.4.3^4.3}{2^4.3^4.2^4}\)=\(\frac{-2^4.2^4.4.3^4.3}{2^4.3^4.2^4}\)=-12
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}.\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}....+\frac{2}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+....+\frac{100-97}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(C=\frac{8}{7.14}+\frac{8}{14.21}+....+\frac{8}{91.98}\)
\(=\frac{7}{8}.\left(\frac{7}{7.14}+\frac{7}{14.21}+...+\frac{7}{91.98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+.....+\frac{1}{91}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\frac{13}{98}=\frac{13}{112}\)
Yêu cầu các CTV, các bạn làm sai giúp nhé! Nếu bạn muốn đáp án tham khảo thì sau đề vòng 1 mk sẽ giải nhé
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
\(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)
\(\Leftrightarrow A=1,5\)
Đổi \(\frac{3}{4}=0,75\)
Vì 0,75 < 1,5
Nên ko thể CM
Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+....+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=\frac{99}{100}\)
\(\left(\frac{1}{6}\right)^5+\left(\frac{1}{8}\right)^3=\frac{1}{2^5}.\frac{1}{3^5}+\frac{1}{2^9}=\frac{1}{2^5}\left(\frac{1}{3^5}+\frac{1}{2^4}\right)=\frac{259}{124416}\)
Chúc bạn
học tốt!!!!!!!!!!!!!!!
\(\left(\frac{1}{6}\right)^5+\left(\frac{1}{8}\right)^3\)
= \(\frac{1}{7776}+\frac{1}{512}\)
= \(\frac{16}{124416}+\frac{243}{124416}\)
= \(\frac{259}{124416}\)
=> \(\frac{10101.39-10101}{10101\left(50-7\right)}\)
=> \(\frac{10101\left(39-1\right)}{10101\left(50-7\right)}\)
=> \(\frac{38}{43}\)
#)Giải :
a)\(2^6.5^6=\left(2.5\right)^6=10^6\)
b)\(8^2.5^2=\left(8.5\right)^2=40^2\)
c)\(4^3.5^3=\left(4.5\right)^3=20^3\)
d)\(5^2.6^2.3^2=\left(5.6.2\right)^2=60^2\)
e)\(\frac{625^5}{25^8}=\frac{\left(25^2\right)^5}{25^8}=\frac{25^{10}}{25^8}=25^2\)
g)\(\frac{3^9}{7}.\frac{7^9}{3}=\frac{\left(3.7\right)^9}{7.3}=\frac{21^9}{21}=21^8\)
\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.\left(3+2.6+7.21\right)}{5.\left(3+2.6+7.21\right)}=\frac{2}{5}\)