\(\frac{2017}{1.2}+\frac{2017}{3.4}+\frac{2017}{4.5}+.....+\frac{2017}{99.100}=?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

\(=2017.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2017.\left(1-\frac{1}{100}\right)\)

\(=2017.\frac{99}{100}\)

\(=\frac{199693}{100}\)

18 tháng 5 2017

\(\frac{2017}{1.2}+\frac{2017}{3.4}+\frac{2017}{4.5}+...+\frac{2017}{99.100}\)                                                                                                                            \(=2017.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)                                                                                                \(=2017.\left(1-\frac{1}{100}\right)\)                                                                                                                                                        \(=2017.\frac{99}{100}\)                                                                                                                                                                      \(=\frac{199693}{100}\)                                    

9 tháng 4 2020

Đặt S = ( 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018 )

Đặt A = ( 1/1.2 + 1/3.4  + ... + 1/2017.2018)

= 1 - 1/2 + 1/3 - 1/4  + ... + 1/2017  - 1/2018

= ( 1 + 1/3 + ... + 1/2017 ) - ( 1/2 + 1/4 + ... + 1/2018 )

= ( 1 + 1/2 + ... + 1/2018 ) - 2 ( 1/2 + 1/4 + ... + 1/2018) )

= ( 1 + 1/2 + ... + 1/2018 ) - ( 1 + 1/2 + ... + 1/1009 )

= 1/1010 + 1/1011 + ... + 1/2018

=> A - ( 1/1010 + 1/1011 + ... + 1/2017 ) = 1/2018

=> S = 1/2018

Vậy S = 1/2018

9 tháng 4 2020

thanks bạn nhiều

26 tháng 12 2017

Ta có: \(\left(\frac{2017}{2}+\frac{2017}{6}+\frac{2017}{12}+...+\frac{2017}{9900}\right)\div\frac{99}{100}\)

\(=2017\cdot\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\cdot\frac{100}{99}\)

\(=2017\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\right)\cdot\frac{100}{99}\)

\(=2017\cdot\left(1-\frac{1}{100}\right)\cdot\frac{100}{99}\)

\(=2017\cdot\frac{99}{100}\cdot\frac{100}{99}\)

\(=2017\)

29 tháng 12 2017

Ta có\(\left(\frac{2017}{2}+\frac{2017}{6}+\frac{2017}{12}+...+\frac{2017}{9900}\right):\frac{99}{100}\)

 Đặt B=\(\frac{2017}{2}+\frac{2017}{6}+\frac{2017}{12}+...+\frac{2017}{9900}\)

Ta có B =\(2017.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)=2017.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2017.\left(1-\frac{1}{100}\right)=2017.\frac{99}{100}\)

Thay B vào A ta có A=\(2017.\frac{99}{100}:\frac{99}{100}=2017\)

13 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\frac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

\(\Rightarrow\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\frac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

14 tháng 7 2017

co m/n =2017/2017   => m/n=1   =>m=n   =>  m+2017=n+2017

suy ra  m+2017/n+2017 =1

ma m/n=1   =>   m/n=m+2017/n+2017

14 tháng 7 2017

Ta có :

\(\frac{m}{n}=\frac{2017}{2017}\Leftrightarrow m=n\)

=> \(\frac{m+2017}{n+2017}=\frac{m+2017}{m+2017}=1=\frac{m}{n}\)

=> \(\frac{m}{n}=\frac{m+2017}{n+2017}\)(đpcm)

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"