K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)

\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)

Vậy \(x=\frac{-1}{4}\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

NV
19 tháng 10 2019

a/ Do \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{3}{x+\frac{3}{x}-1}-\frac{2}{x+\frac{3}{x}-3}=-1\)

Đặt \(x+\frac{3}{x}-3=a\) ta được:

\(\frac{3}{a+2}-\frac{2}{a}=-1\)

\(\Leftrightarrow3a-2\left(a+2\right)=-a\left(a+2\right)\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}-3=1\\x+\frac{3}{x}-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\)

b/ Đặt \(x^2+2x+\frac{5}{2}=a>0\)

Phương trình trở thành:

\(\frac{1}{\left(a-\frac{1}{2}\right)^2}+\frac{1}{\left(a+\frac{1}{2}\right)^2}=\frac{5}{4}\)

\(\Leftrightarrow4\left(a+\frac{1}{2}\right)^2+4\left(a-\frac{1}{2}\right)^2=5\left(a^2-\frac{1}{4}\right)^2\)

\(\Leftrightarrow8a^2+2=5\left(a^4-\frac{1}{2}a^2+\frac{1}{16}\right)\)

\(\Leftrightarrow5a^4-\frac{21}{2}a^2-\frac{27}{16}=0\Rightarrow\left[{}\begin{matrix}a^2=\frac{9}{4}\\a^2=-\frac{3}{20}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+2x+\frac{5}{2}=\frac{3}{2}\\x^2+2x+\frac{5}{2}=-\frac{3}{2}\end{matrix}\right.\)

NV
19 tháng 10 2019

c/ ĐKXĐ: \(x\ne\pm1\)

\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2+\frac{2x^2}{x^2-1}-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)

\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)

\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)

Đặt \(\frac{2x^2}{x^2-1}=a\)

\(\Rightarrow a^2-a-\frac{10}{9}=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{3}\\a=-\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2x^2}{x^2-1}=\frac{5}{3}\\\frac{2x^2}{x^2-1}=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=-5\left(l\right)\\x^2=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{1}{2}\)

d/ĐKXĐ: ...

\(\Leftrightarrow\left(x^2+\frac{36}{x^2}\right)-13\left(x-\frac{6}{x}\right)=0\)

Đặt \(x-\frac{6}{x}=a\Rightarrow x+\frac{36}{x^2}=a^2+12\)

\(\Rightarrow a^2-13a+12=0\Rightarrow\left[{}\begin{matrix}a=1\\a=12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=1\\x-\frac{6}{x}=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-6=0\\x^2-12x-6=0\end{matrix}\right.\)

11 tháng 3 2020

1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)

<=> 21x - 100x + 900 = 80x + 6

<=> -79x - 80x = 6 - 900

<=> -159x = -894

<=> x = 258/53

Vậy S = {258/53}

2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5

<=> 7x2 + 2x - 7x2 + 14x = -5 + 2

<=> 16x = 3

<=> x = 3/16

Vậy S  = {3/16}

11 tháng 3 2020

3) 4(3x - 2) - 3(x - 4) = 7x+  10

<=> 12x - 8 - 3x + 12 = 7x + 10

<=> 9x - 7x = 10 - 4

<=> 2x = 6

<=> x = 3

Vậy S = {3}

4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)

<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80

<=> 4x2 + 20x - 4x2 - 32x = -80 - 16

<=> -12x = -96

<=> x = 8

Vậy S = {8}

11 tháng 12 2019

\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)

\(=\frac{-2}{x^2}\)

\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)

\(=x\left(x-3\right)\)

\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+3}{x+1}\)

# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha