Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1995\times1996-1997}{1995\times1994+1993}\)
\(=\frac{1997\times(1994+2)-1997}{1995\times1994+1993}\)
\(=\frac{1995\times1994+1995\times2-1997}{1995\times1994+1993}\)
\(=\frac{1995\times1994+3990-1997}{1995\times1994+1993}\)
\(=\frac{1995\times1994+1993}{1995\times1994+1993}\)
\(=1\)
Mik đã tính bằng máy tính r, tử số và mẫu số giống nhau nên đáp án là 1
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
=\(\frac{1988x1996+1996+1996}{1996x\left(1997-1995\right)}\)=\(\frac{1996x\left(1988+2\right)}{1996x2}\)
=\(\frac{1996x1990}{1996x2}\)=\(\frac{1990}{2}\)=\(995\)
Hello!!!
1995x1994-1/1993x1995+1994
=1995x[1993+1]-1/1993x1995+1994
=1995x1993+1x1995 -1/1993x1995+1994
=1995x1993+1995-1/1993x1995+1994
=1995x19931994/1993+1995+1994
=1
\(\frac{1995\times1994-1}{1993\times1995+1994}\)
\(=\frac{3978029}{3978029}\)
\(=3978029:3978029\)
\(=1\)
k mik nha bn
thank you very much
1995x1994-1/1993x1995+1994
=1995x[1993+1]-1/1993x1995+1994
=1995x1993+1995x1-1/1993x1995+1994
=1995x1993+1995-1/1993x1995+1994
=1995x1993+1994/1993x1995+1994
=1
=\(\frac{399x\left(45+55\right)}{1995x\left(1996-1991\right)}\)
=\(\frac{399x100}{1995x5}\)
=\(\frac{399x4x5x5}{399x5x5}\)
=\(\frac{4}{1}\)
=\(4\)
= \(\frac{17955+21945}{3982020-3972045}\)
= \(\frac{39900}{9975}\)
= \(\frac{7980}{1995}\)
= \(\frac{1596}{399}\)
= \(\frac{532}{133}\)
Aswer : \(\frac{532}{133}\)
1995x(1996+1)-998
997+1995x1996
=>
1995x(1996+1)-998
997+1995x1996
=>
1995x1996+1995-998
997+1995x1996
=>1995x1996+997
997+1995x1996
=1
Ta có : \(\frac{1995.1996-1997}{1995.1994+1993}\times\frac{6}{5}\)
\(=\frac{1995.\left(1994+2\right)-1997}{1995.1994+1993}\times\frac{6}{5}\)
\(=\frac{1995.1994+1995.2-1997}{1995.1994+1993}\times\frac{6}{5}\)
\(=\frac{1995.1994+3990-1997}{1995.1994+1993}\times\frac{6}{5}\)
\(=\frac{1996.1994+1993}{1995.1994+1993}\times\frac{6}{5}\)
\(=1\times\frac{6}{5}\)
\(=\frac{6}{5}\)
Đúng rồi đó