Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
Giả sử phân số \(\frac{5n+1}{6n-1}\) chưa tối giản
Khi đó ( 5n + 1;6n - 1 ) = d > 1
=> 5n + 1 = dq và 6n - 1 = dp
Từ 5n + 1 = dq => 30n + 6 = 6dq (1)
6n - 1 = dp => 30n - 5 = 5dp (2)
Từ (1) và (2) => 6dq - 5dp = 1
Do đó : d(6q - 5p) = 1 và d chia hết cho 1. Vô lí vì trái với giả sử d > 1
Vậy \(\frac{5n+1}{6n-1}\)là phân số tối giản
Gọi d là ƯCLN (16n+5;6n+2)
Ta có: 16n+5 - 6n+2 chia hết cho d
Suy ra: 3.(16n+5) - 8.(6n+2) chia hết cho d
48n+15 - 48n+16 chia hết cho d
-1 chia hết cho d
Thì d = 1
Vậy \(\frac{16n+5}{6n+2}\) là một phân số tối giản!
Gọi d là ước chung của 16n+5 và 6n+2
=>(6n+2)-(16n+5) chia hết cho d
=>8(6n+2)-3(16n-5) chia hết cho d
=>48n+16-48n-15 chia hết cho d
=>1 chia hết cho d
=>d =-1 hoặc d=1
=>16n+5 và 6n+2 là 2 số nguyên tố cùng nhau
=> phân số đó là phân số tối giản
UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản
Gọi d là UCLN ( 3n+5;n+2)
Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)
\(n+2⋮d\Rightarrow3\left(n+2\right)\)
hay \(3n+6⋮d\)
ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1
Chúc bạn hk tốt!!!
Gọi d là ƯCLN (16n+5; 6n+2) ( d thuộc N*)
\(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)
=> (48n+16)-(48n+15) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
=> ƯCLN (16n+5; 6n+2)=1
=> đpcm
Gọi d là ƯC(16n + 5; 6n + 2)
=> \(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)
=> ( 48n + 16 ) - ( 48n + 15 ) chia hết cho d
=> 48n + 16 - 48 - 15 chia hết cho d
=> ( 48n - 48n ) + ( 16 - 15 ) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(16n + 5 ; 6n + 2) = 1
=> \(\frac{16n+5}{6n+2}\)tối giản ( đpcm )