\(\frac{1616}{1515}+\frac{1616}{3535}+\frac{1616}{6363}+\frac{1616}{9999}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

1616/1515 + 1616/3535 + 1616/6363 + 1616/9999

= 32/21 + 1616/6363 + 1616/9999

= 16/9 + 1616/9999

= 64/33

30 tháng 4 2018

còn cách khác ko bạn

20 tháng 2 2019

\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)

\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)

\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)

20 tháng 2 2019

\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)

\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)

TH1:\(x+4\ne0\)

\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)

\(\Rightarrow-5x+2=-7x+3\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

TH2:\(x+4=0\)

\(\Rightarrow x=-4\)

Chúc bạn học tốt :))

1 tháng 4 2020

a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3

\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0

\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0

\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0

⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0

Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0

⇒x+2004=0

⇔x=-2004

Vậy tập nghiệm của phương trình đã cho là:S={-2004}

Phạm Thái HảiCảm ơn bn iu nhìu nhé❤

NV
28 tháng 9 2019

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=26.31=806\)

\(\Rightarrow1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1=806\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}=803\)

16 tháng 4 2020

\(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)

<=> \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

<=> \(\frac{3\left(2x-1\right)}{5\cdot3}-\frac{5\left(x-2\right)}{3\cdot5}-\frac{x+7}{15}=0\)

<=> \(\frac{6x-3-5x+10-x-7}{15}=0\)

<=> \(\frac{-14}{15}=0\)

=> PT vô nghiệm

6 tháng 7 2017

a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)

b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)

\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)

c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)

d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{1}{x^2+x+1}\)

e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x}{x+2y}\)

Giải các phương trình sau : ( biến đổi đặc biệt )a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử...
Đọc tiếp

Giải các phương trình sau : ( biến đổi đặc biệt )

a) \(\frac{x+1}{35}\)\(\frac{x+3}{33}\)\(\frac{x+5}{31}\)\(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )

b) \(\frac{x-10}{1994}\)\(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)\(\frac{x-4}{2000}\)\(\frac{x-2}{2002}\)\(\frac{x-2002}{2}\)\(\frac{x-2000}{4}\)\(\frac{x-1988}{6}\)\(\frac{x-1996}{8}\)\(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử ) 

c) \(\frac{x-1991}{9}\)\(\frac{x-1993}{7}\)\(\frac{x-1995}{5}\)\(\frac{x-1997}{3}\)\(\frac{x-1991}{1}\)\(\frac{x-9}{1991}\)\(\frac{x-7}{1993}\)\(\frac{x-5}{1995}\)\(\frac{x-3}{1997}\)\(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )

d) \(\frac{x-85}{15}\)\(\frac{x-74}{13}\)\(\frac{x-67}{11}\)\(\frac{x-64}{9}\)= 10  ( Chú ý : 10 = 1 + 2 + 3 + 4 )

e) \(\frac{x-1}{13}\)\(\frac{2x-13}{15}\)\(\frac{3x-15}{27}\)\(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )

 

1
16 tháng 4 2020

a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(=>x+36=0\)

\(=>x=36\)